Теорема Пифагора гласит:

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы:

a 2 + b 2 = c 2 ,

  • a и b – катеты, образующие прямой угол.
  • с – гипотенуза треугольника.

Формулы теоремы Пифагора

  • a = \sqrt{c^{2} - b^{2}}
  • b = \sqrt {c^{2} - a^{2}}
  • c = \sqrt {a^{2} + b^{2}}

Доказательство теоремы Пифагора

Площадь прямоугольного треугольника вычисляется по формуле:

S = \frac{1}{2} ab

Для вычисления площади произвольного треугольника формула площади:

  • p – полупериметр. p=\frac{1}{2}(a+b+c) ,
  • r – радиус вписанной окружности. Для прямоугольникаr=\frac{1}{2}(a+b-c).

Потом приравниваем правые части обеих формул для площади треугольника:

\frac{1}{2} ab = \frac{1}{2}(a+b+c) \frac{1}{2}(a+b-c)

2 ab = (a+b+c) (a+b-c)

2 ab = \left((a+b)^{2} -c^{2} \right)

2 ab = a^{2}+2ab+b^{2}-c^{2}

0=a^{2}+b^{2}-c^{2}

c^{2} = a^{2}+b^{2}

Обратная теорема Пифагора:

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный. То есть для всякой тройки положительных чисел a, b и c , такой, что

a 2 + b 2 = c 2 ,

существует прямоугольный треугольник с катетами a и b и гипотенузой c .

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Доказана она ученым математиком и философом Пифагором.

Значение теоремы в том, что с ее помощью можно доказать другие теоремы и решать задачи.

Дополнительный материал:

История

Чу-пей 500-200 лет до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы.

В древнекитайской книге Чу-пей (англ. ) (кит. 周髀算經 ) говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.

Формулировки

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

Алгебраическая формулировка:

То есть, обозначив длину гипотенузы треугольника через , а длины катетов через и :

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади . То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора:

Для всякой тройки положительных чисел , и , такой, что , существует прямоугольный треугольник с катетами и и гипотенузой .

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы . Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры .

Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

, что и требовалось доказать

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

  1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке 1.
  2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
  3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата.

Что и требовалось доказать.

Доказательство Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.

Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.

Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.

Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно - AB=AK, AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°).

Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.

Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок рассекает квадрат на две одинаковые части (так как треугольники и равны по построению).

Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки , мы усматриваем равенство заштрихованных фигур и .

Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе.

Доказательство методом бесконечно малых

Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди , жившему в первой половине XX века.

Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников):

Пользуясь методом разделения переменных, находим

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов

Интегрируя данное уравнение и используя начальные условия, получаем

Таким образом, мы приходим к желаемому ответу

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет ). Тогда для константы интегрирования получим

Вариации и обобщения

Подобные геометрические фигуры на трех сторонах

Обобщение для подобных треугольников, площадь зеленых фигур A + B = площади синей C

Теорема Пифагора с использованием подобных прямоугольных треугольников

Обобщение теоремы Пифагора сделал Евклид в своей работе Начала , расширив площади квадратов на сторонах до площадей подобных геометрических фигур :

Если построить подобные геометрические фигуры (см. Евклидова геометрия) на сторонах прямоугольного треугольника, тогда сумма двух меньших фигур будет равняться площади большей фигуры.

Главная идея этого обобщения заключается в том, что площадь подобной геометрической фигуры пропорциональна квадрату любого своего линейного размера и в частности квадрату длины любой стороны. Следовательно, для подобных фигур с площадями A , B и C построенных на сторонах с длиной a , b и c , имеем:

Но, по теореме Пифагора, a 2 + b 2 = c 2 , тогда A + B = C .

И наоборот, если мы сможем доказать, что A + B = C для трех подобных геометрических фигур без использования теоремы Пифагора, тогда мы сможем доказать саму теорему, двигаясь в обратном направлении. Например, стартовый центральный треугольник может быть повторно использован как треугольник C на гипотенузе, и два подобных прямоугольных треугольника (A и B ), построенные на двух других сторонах, которые образуются в результате деления центрального треугольника его высотой. Сумма двух меньших площадей треугольников тогда, очевидно, равна площади третьего, таким образом A + B = C и, выполняя предыдущее доказывания в обратном порядке, получим теорему Пифагора a 2 + b 2 = c 2 .

Теорема косинусов

Теорема Пифагора - это частный случай более общей теоремы косинусов, которая связывает длины сторон в произвольном треугольнике:

где θ - угол между сторонами a и b .

Если θ равен 90 градусов, тогда cosθ = 0 и формула упрощается до обычной теоремы Пифагора.

Произвольный треугольник

В любой выбранный угол произвольного треугольника со сторонами a, b, c впишем равнобедренный треугольник таким образом, чтобы равные углы при его основании θ равнялись выбранному углу. Предположим, что выбранный угол θ расположен напротив стороны, обозначенной c . В результате мы получили треугольник ABD с углом θ, что расположен напротив стороны a и стороны r . Второй треугольник образуется углом θ, что расположен напротив стороны b и стороны с длиной s , как показано на рисунке. Сабит Ибн Курра утверждал, что стороны в этих трех треугольниках связаны следующим образом:

Когда угол θ приближается к π/2, основание равнобедренного треугольника уменьшается, и две стороны r и s перекрывают друг друга все меньше и меньше. Когда θ = π/2, ADB превращается в прямоугольный треугольник, r + s = c и получаем начальную теорему Пифагора.

Рассмотрим один из доводов. Треугольник ABC имеет такие же углы, как и треугольник ABD, но в обратном порядке. (Два треугольника имеют общий угол при вершине B, оба имеют угол θ и также имеют одинаковый третий угол, по сумме углов треугольника) Соответственно, ABC - подобен отражению ABD треугольника DBA, как показано на нижнем рисунке. Запишем соотношение между противоположными сторонами и прилегающими к углу θ,

Так же отражение другого треугольника,

Перемножим дроби и добавим эти два соотношения:

что и требовалось доказать.

Обобщение для произвольных треугольников через параллелограммы

Обобщение для произвольных треугольников,
площадь зеленого участка = площади синего

Доказательство тезиса, что на рисунке выше

Сделаем дальнейшее обобщение для непрямоугольных треугольников, используя параллелограммы на трех сторонах вместо квадратов. (квадраты - частный случай.) Верхний рисунок демонстрирует, что для остроугольного треугольника площадь параллелограмма на длинной стороне равна сумме параллелограммов на двух других сторонах, при условии что параллелограмм на длинной стороне построен, как изображено на рисунке (размеры, отмеченные стрелками, одинаковые и определяют стороны нижнего параллелограмма). Эта замена квадратов параллелограммами имеет четкое сходство с начальной теоремой Пифагора, считается, что её сформулировал Папп Александрийский в 4 г. н. э.

Нижний рисунок показывает ход доказательства. Посмотрим на левую сторону треугольника. Левый зеленый параллелограмм имеет такую же площадь, как левая часть синего параллелограмма, потому что они имеют такое же основание b и высоту h . Кроме того, левый зеленый параллелограмм имеет такую же площадь, как левый зеленый параллелограмм на верхнем рисунке, потому что они имеют общее основание (верхняя левая сторона треугольника) и общую высоту, перпендикулярную к этой стороне треугольника. Аналогично рассуждая для правой стороны треугольника докажем, что нижний параллелограмм имеет такую же площадь, как у двух зеленых параллелограммов.

Комплексные числа

Теорему Пифагора используют, чтобы найти расстояние между двумя точками в декартовой координатной системе , и эта теорема справедлива для всех истинных координат: расстояние s между двумя точками (a, b ) и (c, d ) равно

Не возникает проблем с формулой, если к комплексным числам относиться как к векторам с действительными компонентами x + i y = (x , y ). . Например, расстояние s между 0 + 1i и 1 + 0i рассчитываем как модуль вектора (0, 1) − (1, 0) = (−1, 1), или

Тем не менее, для операций с векторами с комплексными координатами необходимо провести определенное усовершенствование формулы Пифагора. Расстояние между точками с комплексными числами (a , b ) и (c , d ); a , b , c , и d все комплексные, сформулируем используя абсолютные величины. Расстояние s основано на векторной разнице (a c , b d ) в следующем виде: пусть разница a c = p + i q , где p - действительная часть разницы, q - мнимая часть, и i = √(−1). Аналогично, пусть b d = r + is . Тогда:

где - это комплексное сопряженное число для . Например, расстояние между точками (a , b ) = (0, 1) и (c , d ) = (i , 0) , рассчитаем разницей (a c , b d ) = (−i , 1) и в результате мы бы получили 0, если бы не были использованы комплексные сопряженные. Следовательно, используя усовершенствованную формулу, получим

Модуль определен следующим образом:

Стереометрия

Значительным обобщением теоремы Пифагора для трехмерного пространства является теорема де Гуа , названная в честь Ж.-П. де Гуа: если тетраэдр имеет прямой угол (как в кубе), тогда квадрат площади грани, лежащей напротив прямого угла, равен сумме квадратов площадей других трех граней. Этот вывод может быть обобщен как «n -мерная теорема Пифагора»:

Теорема Пифагора в трехмерном пространстве связывает диагональ AD с тремя сторонами.

Другое обобщение: Теорема Пифагора может быть применена для стереометрии в следующем виде. Рассмотрим прямоугольный параллелепипед, как показано на рисунке. Найдем длину диагонали BD по теореме Пифагора:

где три стороны образуют прямоугольный треугольник. Используем горизонтальную диагональ BD и вертикальное ребро AB, чтобы найти длину диагонали AD, для этого снова используем теорему Пифагора:

или, если все записать одним уравнением:

Этот результат - это трехмерное выражение для определения величины вектора v (диагональ AD), выраженного через его перпендикулярные составляющие {v k } (три взаимно перпендикулярные стороны):

Это уравнение можно рассматривать как обобщение теоремы Пифагора для многомерного пространства. Однако, результат на самом деле есть не что иное, как неоднократное применение теоремы Пифагора к последовательности прямоугольных треугольников в последовательно перпендикулярных плоскостях.

Векторное пространство

В случае ортогональной системы векторов имеет место равенство, которое тоже называют теоремой Пифагора:

Если - это проекции вектора на координатные оси, то эта формула совпадает с расстоянием Евклида - и означает, что длина вектора равна корню квадратному суммы квадратов его компонентов.

Аналог этого равенства в случае бесконечной системы векторов имеет название равенства Парсеваля .

Неевклидова геометрия

Теорема Пифагора выводится из аксиом евклидовой геометрии и, фактически, не действительна для неевклидовой геометрии, в том виде, в котором записана выше. (То есть теорема Пифагора оказывается своеобразным эквивалентом постулату Евклида о параллельности ) Другими словами, в неевклидовой геометрии соотношение между сторонами треугольника обязательно будет в форме, отличной от теоремы Пифагора. Например, в сферической геометрии все три стороны прямоугольного треугольника (скажем a , b и c ), которые ограничивают собой октант (восьмую часть) единичной сферы, имеют длину π/2, что противоречит теореме Пифагора, потому что a 2 + b 2 ≠ c 2 .

Рассмотрим здесь два случая неевклидовой геометрии - сферическая и гиперболическая геометрия; в обоих случаях, как и для евклидова пространства для прямоугольных треугольников, результат, который заменяет теорему Пифагора, следует из теоремы косинусов .

Однако, теорема Пифагора остается справедливой для гиперболической и эллиптической геометрии, если требование о прямоугольности треугольника заменить условием, что сумма двух углов треугольника должна равняться третьему, скажем A +B = C . Тогда соотношение между сторонами выглядит так: сумма площадей кругов с диаметрами a и b равна площади круга с диаметром c .

Сферическая геометрия

Для любого прямоугольного треугольника на сфере радиусом R (например, если угол γ в треугольнике прямой) со сторонами a , b , c соотношение между сторонами будет иметь такой вид:

Это равенство может быть выведено как особый случай сферической теоремы косинусов , которое справедливо для всех сферических треугольников:

где cosh - это гиперболический косинус. Эта формула является частным случаем гиперболической теоремы косинусов, которая справедлива для всех треугольников:

где γ - это угол, вершина которого противоположна стороне c .

где g ij называется метрическим тензором . Он может быть функцией позиции. Такие криволинейные пространства включают Риманову геометрию как общий пример. Это формулировка также подходит для Евклидова пространства при применении криволинейных координат. Например, для полярных координат:

Векторное произведение

Теорема Пифагора связывает два выражения величины векторного произведения. Один из подходов к определению векторного произведения требует, чтобы он удовлетворял уравнению:

в этой формуле используется скалярное произведение . Правая сторона уравнения называется детерминант Грамма для a и b , что равно площади параллелограмма, образованного этими двумя векторами. Исходя из этого требования, а также требования о перпендикулярности векторного произведения к его составляющим a и b следует, что, за исключением тривиальных случаев из 0- и 1-мерного пространства, векторное произведение определено только в трех и семи измерениях. Используем определение угла в n -мерном пространстве:

это свойство векторного произведения дает его величину в таком виде:

Через фундаментальное тригонометрическое тождество Пифагора получаем другую форму записи его величины:

Альтернативный подход к определению векторного произведения использует выражение для его величины. Тогда, рассуждая в обратном порядке, получаем связь со скалярным произведением:

См. также

Примечания

  1. History topic: Pythagoras’s theorem in Babylonian mathematics
  2. ( , С. 351) С. 351
  3. ( , Vol I, p. 144)
  4. Обсуждение исторических фактов приведено в ( , С. 351) С. 351
  5. Kurt Von Fritz (Apr., 1945). «The Discovery of Incommensurability by Hippasus of Metapontum». The Annals of Mathematics, Second Series (Annals of Mathematics) 46 (2): 242–264.
  6. Льюис Кэррол, «История с узелками», М., Мир, 1985, с. 7
  7. Asger Aaboe Episodes from the early history of mathematics . - Mathematical Association of America, 1997. - P. 51. - ISBN 0883856131
  8. Pythagorean Proposition , by Elisha Scott Loomis
  9. Euclid’s Elements : Book VI, Proposition VI 31: «In right-angled triangles the figure on the side subtending the right angle is equal to the similar and similarly described figures on the sides containing the right angle.»
  10. Lawrence S. Leff cited work . - Barron"s Educational Series. - P. 326. - ISBN 0764128922
  11. Howard Whitley Eves §4.8:...generalization of Pythagorean theorem // Great moments in mathematics (before 1650) . - Mathematical Association of America, 1983. - P. 41. - ISBN 0883853108
  12. Tâbit ibn Qorra (full name Thābit ibn Qurra ibn Marwan Al-Ṣābiʾ al-Ḥarrānī) (826-901 AD) was a physician living in Baghdad who wrote extensively on Euclid’s Elements and other mathematical subjects.
  13. Aydin Sayili (Mar. 1960). «Thâbit ibn Qurra"s Generalization of the Pythagorean Theorem». Isis 51 (1): 35–37. DOI :10.1086/348837 .
  14. Judith D. Sally, Paul Sally Exercise 2.10 (ii) // Cited work . - P. 62. - ISBN 0821844032
  15. For the details of such a construction, see George Jennings Figure 1.32: The generalized Pythagorean theorem // Modern geometry with applications: with 150 figures . - 3rd. - Springer, 1997. - P. 23. - ISBN 038794222X
  16. Arlen Brown, Carl M. Pearcy Item C : Norm for an arbitrary n -tuple ... // An introduction to analysis . - Springer, 1995. - P. 124. - ISBN 0387943692 See also pages 47-50.
  17. Alfred Gray, Elsa Abbena, Simon Salamon Modern differential geometry of curves and surfaces with Mathematica . - 3rd. - CRC Press, 2006. - P. 194. - ISBN 1584884487
  18. Rajendra Bhatia Matrix analysis . - Springer, 1997. - P. 21. - ISBN 0387948465
  19. Stephen W. Hawking cited work . - 2005. - P. 4. - ISBN 0762419229

Каждый школьник знает, что всегда квадрат гипотенузы равен сумме катетов, каждый из которых возведен в квадрат. Эта утверждение носит название теоремы Пифагора. Она является одной из самых известных теорем тригонометрии и математики в целом. Рассмотрим ее подробнее.

Понятие о прямоугольном треугольнике

Перед тем, как переходить к рассмотрению теоремы Пифагора, в которой квадрат гипотенузы равен сумме катетов, которые возведены в квадрат, следует рассмотреть понятие и свойства прямоугольного треугольника, для которого справедлива теорема.

Треугольник - плоская фигура, имеющая три угла и три стороны. Прямоугольный же треугольник, как следует из его названия, имеет один прямой угол, то есть этот угол равен 90 o .

Из общих свойств для всех треугольников известно, что сумма всех трех углов этой фигуры равна 180 o , а это означает, что для прямоугольного треугольника сумма двух углов, которые не являются прямыми, составляет 180 o - 90 o = 90 o . Последний факт означает, что любой угол в прямоугольном треугольнике, который не является прямым, будет всегда меньше 90 o .

Сторону, которая лежит против прямого угла, принято называть гипотенузой. Две же другие стороны являются катетами треугольника, они могут быть равны между собой, а могут и отличаться. Из тригонометрии известно, что чем больше угол, против которого лежит сторона в треугольнике, тем больше длина этой стороны. Это означает, что в прямоугольном треугольнике гипотенуза (лежит против угла 90 o) будет всегда больше любого из катетов (лежат против углов < 90 o).

Математическая запись теоремы Пифагора

Эта теорема гласит, что квадрату гипотенузы равна сумма катетов, каждый из которых предварительно возведен в квадрат. Чтобы математически записать эту формулировку, рассмотрим прямоугольный треугольник, в котором стороны a, b и c являются двумя катетами и гипотенузой, соответственно. В этом случае теорема, которая формулируется, как квадрат гипотенузы равен сумме квадратов катетов, формулой следующей может быть представлена: c 2 = a 2 + b 2 . Отсюда могут быть получены другие важные для практики формулы: a = √(c 2 - b 2), b = √(c 2 - a 2) и c = √(a 2 + b 2).

Отметим, что в случае прямоугольного равностороннего треугольника, то есть a = b, формулировка: квадрат гипотенузы равен сумме катетов, каждый из которых возведен в квадрат, математически запишется так: c 2 = a 2 + b 2 = 2a 2 , откуда вытекает равенство: c = a√2.

Историческая справка

Теорема Пифагора, гласящая, что квадрату гипотенузы равна сумма катетов, каждый из которых возведен в квадрат, была известна задолго до того, когда на нее обратил внимание знаменитый греческий философ. Многие папирусы Древнего Египта, а также глиняные таблички Вавилонян подтверждают, что эти народы использовали отмеченное свойство сторон прямоугольного треугольника. Например, одна из первых египетских пирамид, пирамида Хефрена, строительство которой относится к XXVI веку до нашей эры (за 2000 лет до жизни Пифагора), была построена, исходя из знания соотношения сторон в прямоугольном треугольнике 3x4x5.

Почему же тогда в настоящее время теорема носит имя грека? Ответ прост: Пифагор является первым, кто математически доказал эту теорему. В сохранившихся вавилонских и египетских письменных источниках говорится лишь об ее использовании, но не приводится никакого математического доказательства.

Считается, что Пифагор доказал рассматриваемую теорему путем использования свойств подобных треугольников, которые он получил, проведя высоту в прямоугольном треугольнике из угла 90 o к гипотенузе.

Пример использования теоремы Пифагора

Рассмотрим простую задачу: необходимо определить длину наклонной лестницы L, если известно, что она имеет высоту H = 3 метра, и расстояние от стены, в которую упирается лестница, до ее подножия равно P = 2,5 метра.

В данном случае H и P - это катеты, а L - гипотенуза. Поскольку длина гипотенузы равна сумме квадратов катетов, получаем: L 2 = H 2 + P 2 , откуда L = √(H 2 + P 2) = √(3 2 + 2,5 2) = 3,905 метра или 3 м и 90,5 см.

По мнению Ван-дер-Вардена , очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э.

Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора .

Формулировки

Основная формулировка содержит алгебраические действия - в прямоугольном треугольнике, длины катетов которого равны a {\displaystyle a} и b {\displaystyle b} , а длина гипотенузы - c {\displaystyle c} , выполнено соотношение:

.

Возможна и эквивалентная геометрическая формулировка, прибегающая к понятию площади фигуры : в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. В таком виде теорема сформулирована в Началах Евклида.

Обратная теорема Пифагора - утверждение о прямоугольности всякого треугольника, длины сторон которого связаны соотношением a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} . Как следствие, для всякой тройки положительных чисел a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} , такой, что a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , существует прямоугольный треугольник с катетами a {\displaystyle a} и b {\displaystyle b} и гипотенузой c {\displaystyle c} .

Доказательства

В научной литературе зафиксировано не менее 400 доказательств теоремы Пифагора , что объясняется как фундаментальным значением для геометрии, так и элементарностью результата. Основные направления доказательств: алгебраическое использование соотношений элементов треугольника (таков, например, популярный метод подобия ), метод площадей , существуют также различные экзотические доказательства (например, с помощью дифференциальных уравнений).

Через подобные треугольники

Классическое доказательство Евклида направлено на установление равенства площадей между прямоугольниками, образованными из рассечения квадрата над гипотенузой высотой из прямого угла с квадратами над катетами.

Конструкция, используемая для доказательства следующая: для прямоугольного треугольника с прямым углом C {\displaystyle C} , квадратов над катетами и и квадрата над гипотенузой A B I K {\displaystyle ABIK} строится высота C H {\displaystyle CH} и продолжающий её луч s {\displaystyle s} , разбивающий квадрат над гипотенузой на два прямоугольника и . Доказательство нацелено на установление равенства площадей прямоугольника A H J K {\displaystyle AHJK} с квадратом над катетом A C {\displaystyle AC} ; равенство площадей второго прямоугольника, составляющего квадрат над гипотенузой, и прямоугольника над другим катетом устанавливается аналогичным образом.

Равенство площадей прямоугольника A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} устанавливается через конгруэнтность треугольников △ A C K {\displaystyle \triangle ACK} и △ A B D {\displaystyle \triangle ABD} , площадь каждого из которых равна половине площади квадратов A H J K {\displaystyle AHJK} и A C E D {\displaystyle ACED} соответственно в связи со следующим свойством: площадь треугольника равна половине площади прямоугольника, если у фигур есть общая сторона, а высота треугольника к общей стороне является другой стороной прямоугольника. Конгруэнтность треугольников следует из равенства двух сторон (стороны квадратов) и углу между ними (составленного из прямой угла и угла при A {\displaystyle A} .

Таким образом, доказательством устанавливается, что площадь квадрата над гипотенузой, составленного из прямоугольников A H J K {\displaystyle AHJK} и B H J I {\displaystyle BHJI} , равна сумме площадей квадратов над катетами.

Доказательство Леонардо да Винчи

К методу площадей относится также доказательство, найденное Леонардо да Винчи . Пусть дан прямоугольный треугольник △ A B C {\displaystyle \triangle ABC} с прямым углом C {\displaystyle C} и квадраты A C E D {\displaystyle ACED} , B C F G {\displaystyle BCFG} и A B H J {\displaystyle ABHJ} (см. рисунок). В этом доказательстве на стороне H J {\displaystyle HJ} последнего во внешнюю сторону строится треугольник, конгруэнтный △ A B C {\displaystyle \triangle ABC} , притом отражённый как относительно гипотенузы, так и относительно высоты к ней (то есть J I = B C {\displaystyle JI=BC} и H I = A C {\displaystyle HI=AC} ). Прямая C I {\displaystyle CI} разбивает квадрат, построенный на гипотенузе на две равные части, поскольку треугольники △ A B C {\displaystyle \triangle ABC} и △ J H I {\displaystyle \triangle JHI} равны по построению. Доказательство устанавливает конгруэнтность четырёхугольников C A J I {\displaystyle CAJI} и D A B G {\displaystyle DABG} , площадь каждого из которых, оказывается, с одной стороны, равной сумме половин площадей квадратов на катетах и площади исходного треугольника, с другой стороны - половине площади квадрата на гипотенузе плюс площадь исходного треугольника. Итого, половина суммы площадей квадратов над катетами равна половине площади квадрата над гипотенузой, что равносильно геометрической формулировке теоремы Пифагора.

Доказательство методом бесконечно малых

Существует несколько доказательств, прибегающих к технике дифференциальных уравнений . В частности, Харди приписывается доказательство, использующее бесконечно малые приращения катетов a {\displaystyle a} и b {\displaystyle b} и гипотенузы c {\displaystyle c} , и сохраняющие подобие с исходным прямоугольником, то есть, обеспечивающие выполнение следующих дифференциальных соотношений:

d a d c = c a {\displaystyle {\frac {da}{dc}}={\frac {c}{a}}} , d b d c = c b {\displaystyle {\frac {db}{dc}}={\frac {c}{b}}} .

Методом разделения переменных из них выводится дифференциальное уравнение c d c = a d a + b d b {\displaystyle c\ dc=a\,da+b\,db} , интегрирование которого даёт соотношение c 2 = a 2 + b 2 + C o n s t {\displaystyle c^{2}=a^{2}+b^{2}+\mathrm {Const} } . Применение начальных условий a = b = c = 0 {\displaystyle a=b=c=0} определяет константу как 0, что в результате даёт утверждение теоремы.

Квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов.

Вариации и обобщения

Подобные геометрические фигуры на трёх сторонах

Важное геометрическое обобщение теоремы Пифагора дал Евклид в «Началах », перейдя от площадей квадратов на сторонах к площадям произвольных подобных геометрических фигур : сумма площадей таких фигур, построенных на катетах, будет равна площади подобной им фигуры, построенной на гипотенузе.

Главная идея этого обобщения заключается в том, что площадь подобной геометрической фигуры пропорциональна квадрату любого своего линейного размера и в частности квадрату длины любой стороны. Следовательно, для подобных фигур с площадями A {\displaystyle A} , B {\displaystyle B} и C {\displaystyle C} , построенных на катетах с длинами a {\displaystyle a} и b {\displaystyle b} и гипотенузе c {\displaystyle c} соответственно, имеет место соотношение:

A a 2 = B b 2 = C c 2 ⇒ A + B = a 2 c 2 C + b 2 c 2 C {\displaystyle {\frac {A}{a^{2}}}={\frac {B}{b^{2}}}={\frac {C}{c^{2}}}\,\Rightarrow \,A+B={\frac {a^{2}}{c^{2}}}C+{\frac {b^{2}}{c^{2}}}C} .

Так как по теореме Пифагора a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}} , то выполнено .

Кроме того, если возможно доказать без привлечения теоремы Пифагора, что для площадей трёх подобных геометрических фигур на сторонах прямоугольного треугольника выполнено соотношение A + B = C {\displaystyle A+B=C} , то с использованием обратного хода доказательства обобщения Евклида можно вывести доказательство теоремы Пифагора. Например, если на гипотенузе построить конгруэтный начальному прямоугольный треугольник площадью C {\displaystyle C} , а на катетах - два подобных ему прямоугольных треугольника с площадями A {\displaystyle A} и B {\displaystyle B} , то оказывается, что треугольники на катетах образуются в результате деления начального треугольника его высотой, то есть сумма двух меньших площадей треугольников равна площади третьего, таким образом A + B = C {\displaystyle A+B=C} и, применяя соотношение для подобных фигур, выводится теорема Пифагора.

Теорема косинусов

Теорема Пифагора - это частный случай более общей теоремы косинусов, которая связывает длины сторон в произвольном треугольнике :

a 2 + b 2 − 2 a b cos ⁡ θ = c 2 {\displaystyle a^{2}+b^{2}-2ab\cos {\theta }=c^{2}} ,

где - угол между сторонами a {\displaystyle a} и b {\displaystyle b} . Если угол равен 90°, то cos ⁡ θ = 0 {\displaystyle \cos \theta =0} , и формула упрощается до обычной теоремы Пифагора.

Произвольный треугольник

Существует обобщение теоремы Пифагора на произвольный треугольник, оперирующее исключительно соотношением длин сторон, считается, что оно впервые было установлено сабийским астрономом Сабитом ибн Куррой . В нём для произвольного треугольника со сторонами в него вписывается равнобедренный треугольник с основанием на стороне c {\displaystyle c} , вершиной, совпадающей с вершиной исходного треугольника, противолежащей стороне c {\displaystyle c} и углами при основании, равными углу θ {\displaystyle \theta } , противолежащему стороне c {\displaystyle c} . В результате образуются два треугольника, подобных исходному: первый - со сторонами a {\displaystyle a} , дальней от неё боковой стороной вписанного равнобедренного треугольника, и r {\displaystyle r} - части стороны c {\displaystyle c} ; второй - симметрично к нему от стороны b {\displaystyle b} со стороной s {\displaystyle s} - соответствующей частью стороны c {\displaystyle c} . В результате оказывается выполнено соотношение :

a 2 + b 2 = c (r + s) {\displaystyle a^{2}+b^{2}=c(r+s)} ,

вырождающееся в теорему Пифагора при θ = π / 2 {\displaystyle \theta =\pi /2} . Соотношение является следствием подобия образованных треугольников:

c a = a r , c b = b s ⇒ c r + c s = a 2 + b 2 {\displaystyle {\frac {c}{a}}={\frac {a}{r}},\,{\frac {c}{b}}={\frac {b}{s}}\,\Rightarrow \,cr+cs=a^{2}+b^{2}} .

Теорема Паппа о площадях

Неевклидова геометрия

Теорема Пифагора выводится из аксиом евклидовой геометрии и недействительна для неевклидовой геометрии - выполнение теоремы Пифагора равносильно постулату Евклида о параллельности .

В неевклидовой геометрии соотношение между сторонами прямоугольного треугольника обязательно будет в форме, отличной от теоремы Пифагора. Например, в сферической геометрии все три стороны прямоугольного треугольника, которые ограничивают собой октант единичной сферы, имеют длину π / 2 {\displaystyle \pi /2} , что противоречит теореме Пифагора.

При этом теорема Пифагора справедлива в гиперболической и эллиптической геометрии, если требование о прямоугольности треугольника заменить условием, что сумма двух углов треугольника должна равняться третьему .

Сферическая геометрия

Для любого прямоугольного треугольника на сфере радиусом R {\displaystyle R} (например, если угол в треугольнике прямой) со сторонами a , b , c {\displaystyle a,b,c} соотношение между сторонами имеет вид :

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)} .

Это равенство может быть выведено как особый случай сферической теоремы косинусов , которая справедлива для всех сферических треугольников:

cos ⁡ (c R) = cos ⁡ (a R) ⋅ cos ⁡ (b R) + sin ⁡ (a R) ⋅ sin ⁡ (b R) ⋅ cos ⁡ γ {\displaystyle \cos \left({\frac {c}{R}}\right)=\cos \left({\frac {a}{R}}\right)\cdot \cos \left({\frac {b}{R}}\right)+\sin \left({\frac {a}{R}}\right)\cdot \sin \left({\frac {b}{R}}\right)\cdot \cos \gamma } . ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b} ,

где ch {\displaystyle \operatorname {ch} } - гиперболический косинус . Эта формула является частным случаем гиперболической теоремы косинусов, которая справедлива для всех треугольников :

ch ⁡ c = ch ⁡ a ⋅ ch ⁡ b − sh ⁡ a ⋅ sh ⁡ b ⋅ cos ⁡ γ {\displaystyle \operatorname {ch} c=\operatorname {ch} a\cdot \operatorname {ch} b-\operatorname {sh} a\cdot \operatorname {sh} b\cdot \cos \gamma } ,

где γ {\displaystyle \gamma } - угол, вершина которого противоположна стороне c {\displaystyle c} .

Используя ряд Тейлора для гиперболического косинуса ( ch ⁡ x ≈ 1 + x 2 / 2 {\displaystyle \operatorname {ch} x\approx 1+x^{2}/2} ) можно показать, что если гиперболический треугольник уменьшается (то есть, когда a {\displaystyle a} , b {\displaystyle b} и c {\displaystyle c} стремятся к нулю), то гиперболические соотношения в прямоугольном треугольнике приближаются к соотношению классической теоремы Пифагора.

Применение

Расстояние в двумерных прямоугольных системах

Важнейшее применение теоремы Пифагора - определение расстояния между двумя точками в прямоугольной системе координат : расстояние s {\displaystyle s} между точками с координатами (a , b) {\displaystyle (a,b)} и (c , d) {\displaystyle (c,d)} равно:

s = (a − c) 2 + (b − d) 2 {\displaystyle s={\sqrt {(a-c)^{2}+(b-d)^{2}}}} .

Для комплексных чисел теорема Пифагора даёт естественную формулу для нахождения модуля комплексного числа - для z = x + y i {\displaystyle z=x+yi} он равен длине

Теорема

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов (рис. 1):

$c^{2}=a^{2}+b^{2}$

Доказательство теоремы Пифагора

Пусть треугольник $A B C$ - прямоугольный треугольник с прямым углом $C$ (рис. 2).

Проведём высоту из вершины $C$ на гипотенузу $A B$, основание высоты обозначим как $H$ .

Прямоугольный треугольник $A C H$ подобен треугольнику $A B C$ по двум углам ($\angle A C B=\angle C H A=90^{\circ}$, $\angle A$ - общий). Аналогично, треугольник $C B H$ подобен $A B C$ .

Введя обозначения

$$B C=a, A C=b, A B=c$$

из подобия треугольников получаем, что

$$\frac{a}{c}=\frac{H B}{a}, \frac{b}{c}=\frac{A H}{b}$$

Отсюда имеем, что

$$a^{2}=c \cdot H B, b^{2}=c \cdot A H$$

Сложив полученные равенства, получаем

$$a^{2}+b^{2}=c \cdot H B+c \cdot A H$$

$$a^{2}+b^{2}=c \cdot(H B+A H)$$

$$a^{2}+b^{2}=c \cdot A B$$

$$a^{2}+b^{2}=c \cdot c$$

$$a^{2}+b^{2}=c^{2}$$

Что и требовалось доказать.

Геометрическая формулировка теоремы Пифагора

Теорема

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах (рис. 2):

Примеры решения задач

Пример

Задание. Задан прямоугольный треугольник $A B C$, катеты которого равны 6 см и 8 см. Найти гипотенузу этого треугольника.

Решение. Согласно условию катеты $a=6$ см, $b=8$ см. Тогда, согласно теореме Пифагора, квадрат гипотенузы

$c^{2}=a^{2}+b^{2}=6^{2}+8^{2}=36+64=100$

Отсюда получаем, что искомая гипотенуза

$c=\sqrt{100}=10$ (см)

Ответ. 10 см

Пример

Задание. Найти площадь прямоугольного треугольника, если известно, что один из его катетов на 5 см больше другого, а гипотенуза равна 25 см.

Решение. Пусть $x$ см - длина меньшего катета, тогда $(x+5)$ см - длина большего. Тогда согласно теореме Пифагора имеем:

$$x^{2}+(x+5)^{2}=25^{2}$$

Раскрываем скобки, сводим подобные и решаем полученное квадратное уравнение:

$x^{2}+5 x-300=0$

Согласно теореме Виета , получаем, что

$x_{1}=15$ (см) , $x_{2}=-20$ (см)

Значение $x_{2}$ не удовлетворяет условию задачи, а значит, меньший катет равен 15 см, а больший - 20 см.

Площадь прямоугольного треугольника равна полупроизведению длин его катетов, то есть

$$S=\frac{15 \cdot 20}{2}=15 \cdot 10=150\left(\mathrm{см}^{2}\right)$$

Ответ. $S=150\left(\mathrm{см}^{2}\right)$

Историческая справка

Теорема Пифагора - одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

В древнекитайской книге "Чжоу би суань цзин" говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. Крупнейший немецкий историк математики Мориц Кантор (1829 - 1920) считает, что равенство $3^{2}+4^{2}=5^{2}$ было известно уже египтянам ещё около 2300 г. до н.э. По мнению ученого, строители строили тогда прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте приводится приближённое вычисление гипотенузы равнобедренного прямоугольного треугольника.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png