Теорема 12. {Первый достаточный признак экстремума) Пусть х 0 - критическая точка непрерывной функции f(х). Если f" (х) при переходе через точку x 0 меняет знак с «+» на «-», то x 0 - точка локального максимума. Если f "(х) при переходе через точку х 0 меняет знак с «-» на «+», то х 0 - точка локального минимума. Если f "(х) при переходе через точку x 0 не меняет знак, то х 0 не является точкой локального экстремума.

Доказательство. Пусть x 0 - точка возможного экстремума функции, причем

f "(x)>0 для xx Э U (x 0 ,Дельта);

f "(x) х 0 , A x Э U (x 0 ,Дельта). Тогда

при f "(x)>0 для xx Э U (x 0 ,Дельта); => f(x 0 )>f(x),

При f "(x) х 0 , A x Э U (x 0 ,Дельта). => f(x 0 )
следовательно A x Э U (x 0 ,Дельта): f (x 0 )> f (x ), т. е. точка х 0 является точка локального максимума.

Аналогично доказывается и существование точки локального минимума. Если f `(x ) сохраняет знак в окрестности точки х 0 , то в этой окрестности функция монотонна, т. е. точка х 0 не является точкой локального экстремума.

Аннотация
Данная работа преследует несколько целей. Первая из которых заключается в изложении нового подхода к Платоновым телам (ПТ) Второй, не менее важной, целью являет освещение роли Платоновых тел в контексте развития математики и науки в целом.

Платоновы тела также рассматриваются и с более общих позиций – их симметрия, связь с «золотым сечением», их влияния на развитие математики и всего теоретического естествознания. Обсуждаются результаты их использования в науке прошлых веков («Божественная пропорция» Пачоли, «Космический кубок» Кеплера, «икосаэдрическая идея» Клейна). Приводятся примеры современных научных открытий, основанных на ПТ (квазикристаллы, фуллерены, новый подход к созданию теории элементарных частиц).

Уделяется внимание и роли Платоновых тел в создании «Начал» Евклида. Согласно «гипотезе Прокла» развитие математики, начиная с Евклида, осуществлялось в двух направлениях: «Классическая математика» (позаимствовала в «Началах» аксиоматический подход, теорию чисел и теорию иррациональностей) и «Математика гармонии» (основана на ПТ и «золотом сечении»).

На основании проделанной работы делается вывод: по своему влиянию на развитие математики и науки в целом Платоновы тела вместе с «золотым сечением» можно поставить в один ряд не только с теоремой Пифагора (Кеплер), но и с натуральными и иррациональными числами.
Содержание:


  1. Платоновы тела

  2. Симметрия Платоновых тел

  3. Связь Платоновых тел с «золотым сечением»

  4. Гипотеза Прокла: с какой целью Евклид написал свои «Начала»?

  5. Новый взгляд на развитие математики, вытекающий из гипотезы Прокла

  6. «Космический кубок» Иоганна Кеплера

  7. Платоновы тела и «золотое сечение» в «Божественной пропорции» Луки Пачоли

  8. Икосаэдрическая идея Феликса Клейна

  9. Квазикристаллы Дана Шехтмана

  10. Фуллерены (Нобелевская Премия по химии - 1996)

  11. Новые подходы в теории элементарных частиц

  12. Экспериментальное доказательство проявления «золотого сечения» в квантовом мире

  13. Сюрпризы для теоретического естествознания

  14. Заключение: Платоновы тела как уникальные геометрические объекты науки и природы

  15. Литература

Пока алгебра и геометрия двигались каждая своим путем,

их прогресс был медленным, а приложения ограниченными.

Но когда эти науки объединили свои усилия, они

позаимствовали друг у друга новые жизненные силы

и с тех пор быстрыми шагами направились к совершенству

(Жозеф Луи Лагранж)

1. Платоновы тела

Правильные многогранники известны с древнейших времён. Но почему правильные многогранники называют Платоновыми телами?

Платон (428-348 до н.э.) в своих трудах много внимания уделил взглядам пифагорейцев на правильные тела, поскольку и сам считал, что вся Вселенная имеет форму додекаэдра, а материя состоит из атомов четырех типов, которые имеют форму тетраэдров, кубов, октаэдров и икосаэдров. Он первым воспел красоту правильных выпуклых многогранников, обладающих удивительной симметрией в трёхмерном пространстве. Грани этих многогранников – это правильные многоугольники с одинаковым числом сторон; в каждой вершине многогранников сходится одинаковое число рёбер. Примечательно, что все пять Платоновых тел в разные времена использовались в качестве игральных костей.

^ Теэтет Афинский (417 - 369 до н. э. ), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.

После них эстафету принял Евклид (365-300 до н.э.). В заключительной книге знаменитых «Начал» Евклид дал не только полный, подробный анализ Платоновых тел, но и простейшее геометрическое доказательство существования не более пяти правильных тел.

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Венниджера «Модели многогранников». В русском переводе эта книга опубликована издательством «Мир» в 1974 г. Эпиграфом к книге выбрано высказывание Бертрана Рассела: « Математика владеет не только истиной, но и высокой красотой красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Эта мысль Бертрана Рассела, прежде всего, может быть отнесена к правильным многогранникам, с которых и начинается книга М. Венниджера. Эти многогранники принято называть Платоновыми телами, названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии. Начнем наше рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники.

Первый из них – это тетраэдр (Рис.1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.




(а)


(б)






(г) (д)

Рисунок 1. Платоновы тела: (а) тетраэдр («Огонь»), (б) гексаэдр или куб («Земля»), (в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (Рис.1-б). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями – октаэдр.

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями – икосаэдр (Рис.1-г). Следующая правильная форма многоугольника – квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (Рис. 1-в).

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника –

пентагона. Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (Рис.1-д).

Следующим правильным многоугольником является шестиугольник. Однако если соединить три шестиугольника в одной точке, то мы получим плоскость, то есть, из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

2. Симметрия Платоновых тел

С давних времен Платоновы тела привлекали внимание исследователей своими исключительными симметрическими свойствами. Обычно для характеристики симметрии некоторого объекта приводится полная совокупность элементов симметрии. Например, группа симметрий снежинки имеет вид L 6 6Р. Это означает, что снежинка имеет одну ось симметрии шестого порядка L 6 , то есть, может 6 раз «самосовмещаться» при повороте вокруг оси, и 6 плоскостей симметрии. Группа симметрий цветка ромашки, имеющего 24 лепестка, имеет вид L 24 24Р, то есть, цветок имеет одну ось 24-го порядка и 24 плоскости симметрии. В таблице 1 приведены группы симметрий всех «Платоновых Тел».

Таблица 1. Группы симметрий Платоновых тел


Многогранник

Форма граней

Симметрия

Тетраэдр

Равносторонние треугольники

4L 3 3L 2 6Р

Куб

Квадраты

3L 4 4L 3 6L 2 9Р С

Октаэдр

Равносторонние треугольники

3L 4 4L 3 6L 2 9Р С

Додекаэдр

Равносторонние пятиугольники

6L 5 10L 3 15L 2 15Р С

Икосаэдр

Равносторонние треугольники

6L 5 10L 3 15L 2 15Р С

Анализ симметрий «Платоновых Тел», приведенных в Табл. 1, показывает, что группы симметрий куба и октаэдра, а также додекаэдра и икосаэдра совпадают. Это связано с тем, что додекаэдр дуален икосаэдру, а куб дуален октаэдру. Анализ этой таблицы показывает, что додекаэдр и икосаэдр выделяются своими симметрическими свойствами среди других Платоновых тел. Группа симметрий 6L 5 10L 3 15L 2 15Р С означает, что додекаэдр и икосаэдр обладают 6 линиями симметрии 5-го порядка L 5 , 10 линиями симметрии 3-го порядка L 3 , 15 линиями симметрии 2-го порядка L 2 , 15 плоскостями симметрии Р и центром симметрии С.

^ 3. Связь Платоновых тел с « золотым сечением».

Анализ Платоновых тел на Рис. 1 показывает, что два Платоновых тела - додекаэдр и двойственный ему икосаэдр непосредственно связаны с «золотым сечением». Действительно, гранями додекаэдра (Рис. 1-д) являются пентагоны, т.е., правильные пятиугольники, основанные на золотом сечении. Если внимательно посмотреть на икосаэдр (Рис. 1-г), то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что «золотое сечение» играет существенную роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотое сечение в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через R i . Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через R m . Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через R c . В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра,

имеющего ребро единичной длины, выражается через золотую пропорцию:
(Табл.2).

Таблица 2. Золотая пропорция в сферах додекаэдра и икосаэдра

Заметим, что отношение радиусов одинаково, как для икосаэдра, так и

для додекаэдра. Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра, подтверждающие их связь с золотой пропорцией. Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотое сечение является главной пропорцией додекаэдра и икосаэдра, и этот факт является особенно интересным с точки зрения так называемой « додекаэдро- икосаэдрической доктрины» .


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Теорема (первое достаточное условие экстремума). Пусть в точке функция непрерывна, а производная при переходе через точку меняет знак. Тогда – точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Доказательство. Пусть при и при .

По теореме Лагранжа , где .Тогда если , то ; поэтому и , следовательно, , или . Если же , то ; поэтому и , следовательно, или .

Таким образом доказано, что в любых точках вблизи , т.е. – точка максимума функции .

Доказательство теоремы для точки минимума проводится аналогично. Теорема доказана .

Если при переходе через точку производная не меняет знак, то в точке экстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции равна 0 (), а ее вторая производная в этой точке отлична от нуля () и непрерывна в некоторой окрестности точки . Тогда – точка экстремума ; при это точка минимума, а при это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума.

1. Найти производную.

2. Найти критические точки функции.

3. Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

4. Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума.

1. Найти производную .

2. Найти вторую производную .

3. Найти те точки, в которых .

4. В этих точках определить знак .

5. Сделать вывод о существовании и характере экстремумов.

6. Найти экстремальные значения функции.

Пример. Рассмотрим . Найдем . Далее, при и при . Исследуем критические точки с помощью первого достаточного условия экстремума. Имеем, что при и при , и при . В точках и производная меняет свой знак: при с «+» на «–» и при с «–» на «+». Это значит, что в точке функция имеет максимум, а точке – минимум; . Для сравнения исследуем критические точки с помощью второго достаточного условия экстремума. Найдем вторую производную . Имеем: , а это значит, что в точке функция имеет максимум, а точке – минимум.

Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.

Определение . Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.



Различают вертикальные (рис. 6.6 а), горизонтальные (рис. 6.6 б) и наклонные (рис. 6.6 в) асимптоты.

На рис. 6.6а изображена вертикальная асимптота .

На рис 6.6б – горизонтальная асимптота .

На рис. 6.6в – наклонная асимптота .

Теорема 1. В точках вертикальных асимптот (например, ) функция терпит разрыв, ее предел слева и справа от точки равен :

Теорема 2. Пусть функция определена при достаточно больших и существуют конечные пределы

И .

Тогда прямая является наклонной асимптотой графика функции .

Теорема 3. Пусть функция определена при достаточно больших и существует предел функции . Тогда прямая есть горизонтальная асимптота графика функции .

Горизонтальная асимптота является частным случаем наклонной асимптоты, когда . Поэтому, если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример. Найти асимптоты графика функции .

Решение . В точке функция не определена, найдем пределы функции слева и справа от точки :

; .

Следовательно, - вертикальная асимптота.

Общая схема исследования функций и построения их графиков. Пример.

Общая схема исследования функции и построения ее графика.

1. Найти область определения .

2. Исследовать функцию на четность – нечетность.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

5. Найти экстремумы и интервалы монотонности функции.

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

7. Схематично построить график.

Подробная схема исследования функции и построения графика .

1. Найти область определения .

a. Если у есть знаменатель, он не должен обращаться в 0.



b. Подкоренное выражение корня четной степени должно быть неотрицательным (больше либо равно нулю).

c. Подлогарифмическое выражение должно быть положительным.

2. Исследовать функцию на четность – нечетность.

a. Если , то функция четная.

b. Если , то функция нечетная.

c. Если не выполнено ни , ни , то – функция общего вида.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

a. Вертикальная асимптота может возникнуть только на границе области определения функции.

b. Если ( или ), то – вертикальная асимптота графика .

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

a. Если , то – горизонтальная асимптота графика .

b. Если и , то прямая является наклонной асимптотой графика .

c. Если пределы, указанные в п. a, b, существуют только при одностороннем стремлении к бесконечности ( или ), то полученные асимптоты будут односторонними: левосторонними при и правосторонними при .

5. Найти экстремумы и интервалы монотонности функции.

a. Найти производную .

b. Найти критические точки (те точки, где или где не существует).

c. На числовой оси отметить область определения и ее критические точки.

d. На каждом из полученных числовых интервалов определить знак производной .

e. По знакам производной сделать вывод о наличии экстремумов у и их типе.

f. Найти экстремальные значения .

g. По знакам производной сделать вывод о возрастании и убывании .

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

a. Для того, чтобы найти точки пересечения графика с осью , надо решить уравнение . Точки , где – нули , будут точками пересечения графика с осью .

b. Точка пересечения графика с осью имеет вид . Она существует, только если точка входит в область определения функции .

8. Схематично построить график.

a. Построить систему координат и асимптоты.

b. Отметить экстремальные точки.

c. Отметить точки пересечения графика с осями координат.

d. Схематично построить график так, чтобы он проходил через отмеченные точки и приближался к асимптотам.

Пример. Исследовать функцию и схематично построить ее график.

2. – функция общего вида.

3. Поскольку и , то прямые и являются вертикальными асимптотами; точки и являются точками разрыва. , при не входит в область определения функции

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x) > 0

(f " (x) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Исследование условий и построение графиков.

Найти область определения функции

Найти точки пересечения графика с осями координат

Найти интервалы знака постоянства

Исследовать на четность, нечетность

Найти асимптоты графика функции

Найти интервалы монотонности функции

Найти экстремумы функции

Найти интервалы выпуклости и точки перегиба

Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры.

Вертикальная

Вертикальная асимптота - прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

[править]Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

[править]Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Пример наклонной асимптоты

1.

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при , и из выше указанных замечаний следует, что

1. Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.

2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

График функции с двумя горизонтальными асимптотами

]Нахождение асимптот

Порядок нахождения асимптот

1. Нахождение вертикальных асимптот.

2. Нахождение двух пределов

3. Нахождение двух пределов :

если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, .

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png