Его можно рассматривать как частный случай центрального, при котором центр проецирования удален в бесконечность.

Применяют параллельные проецирующие прямые, проведенные в заданном направлении.

Если направление проецирования перпендикулярно плоскости проекций, то проецирование называют прямоугольным или ортогональным.

При параллельном проецировании сохраняются все свойства центрального, а так же возникают следующие свойства:

а). Проекции взаимно // прямых //, а отношение длин отрезков таких прямых равно отношению длин их проекций

б). Плоская фигура, // плоскости проекций проецируется на эту плоскость в натуральную величину

в). Если прямая перпендикулярна направлению проецирования, то её проекцией является точка

Если есть центр параллельной проекции, мы не сможем определить положение точки в пространстве.

Гаспар Монж предложил взять две взаимно перпендикулярные плоскости проекций (горизонтальную П 1 и фронтальную П 2) и используя метод прямоугольного проецирования направить проецирующие лучи перпендикулярно плоскостям.

П 1 – горизонтальная плоскость проекций

П 2 -фронтальная плоскость проекций

X- ось проекций- линия пересечения плоскостей П 1 и П 2 или П 1 /П 2

A x A 1 иA x A 2 – перпендикулярны осиX–линии связи

Если есть в пространстве точка А, то опускаем из неё перпендикуляр на П 1 (горизонтальная проекция точки А – А 1) и на плоскость П 2 (фронтальная проекция точки А – А 2)

Но данное наглядное изображение точки в системе П 1 /П 2 для целей черчения неудобно.

Преобразуем его так, чтобы горизонтальная плоскость проекций совпала с фронтальной, образуя одну плоскость чертежа.

Это преобразование осуществляется путем поворота вокруг оси Х плоскости П 1 на угол 90 о вниз. При этомA x A 2 и A x A 1 образуют один отрезок, расположенный на перпендикуляре к оси проекций Х, называемомлинией связи.

Получили чертеж под названием эпюр Монжа.

Горизонтальная и фронтальная проекции всегда лежат на одной линии связи, перпендикулярной оси.

В зависимости от сложности для полного выявления форм деталей бывает необходимо три и более изображений. Поэтому вводят три и более плоскостей проекций.

Проецирование точки на три плоскости проекций. Комплексный чертеж точки.

Получили эпюр Монжа для трех плоскостей или комплексный чертеж точки А

H(П 1) - горизонтальная плоскость проекций

V(П 2) - фронтальная плоскость проекций

W(П 3) - профильная плоскость проекций

А 1 - горизонтальная проекция точки А

А 2 - фронтальная проекция точки А

А 3 - профильная проекция точки А

П 1 и П 2 -образуют ось Х

П 2 и П 3 -образуют осьZ

П 1 и П 3 -образуют ось У

Две проекции точки лежат на одной линии связи, перпендикулярной оси.

Отрезки проецирующих линий от точки А до плоскостей проекций – координаты точки (X А, У А , Z А ). Задаются числами.

ОА х - абсцисса точки А–координата Х А - расстояние от А до П 3 . ОА х =А 1 А у = А z А 2

ОА у - ордината точки А–координата У А - расстояние от А до П 2 . . ОА у =А х А 1

ОА z - аппликата точки А–координатаZ А - расстояние от А до П 1 . ОА z =А х А 2

Вопросы для самопроверки

    Какие есть методы проецирования?

    Какие свойства центрального проецирования?

    Какие свойства параллельного проецирования?

    Как получить проекции точки на две плоскости проекции?

    Как получить проекции точки на три плоскости проекции?

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.

На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а́́ ) называют профильной проекцией и обозначают а́́ .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а́ и а́́ точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).



На рисунке 16 три проекции а, а́ и а́́ точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а́ всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а́ и а́́ всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а́́ – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а˝А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а́А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а˝А = Оа х = а у а = a z á;

y = а́А = Оа y = а x а = а z а˝;

z = aA = Oa z = а x а́ = а y а˝.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а ́= Оа x = а y а,

z = а x á = Oa z = а y а˝.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а˝.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а́ х х ;

2) фронтальная и профильная проекции а́ и а˝ должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а́ и а˝ имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.

Проекции прямой

Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной и фронтальной плоскостях.

На рисунке 17 показаны проекции (а и á, b и ) двух точек А и В. С их помощью определяется положение некоторой прямой АВ . При соединении одноименных проекций этих точек (т. е. а и b, а́ и ) можно получить проекции аb и а́b́ прямой АВ.

На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.

Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.

Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.

Если некоторая точка С лежит на прямой АВ , ее проекции с и с́ находятся на одноименных проекциях прямой ab и а́b́ . Данную ситуацию поясняет рисунок 19.

Следы прямой

След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).

Горизонтальным следом прямой называется некоторая точка H , в которой прямая встречается с горизонтальной плоскостью, а фронтальным – точка V , в которой данная прямая встречается с фронтальной плоскостью (рис. 20).

На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.

Иногда также рассматривается профильный след прямой, W – точка пересечения прямой с профильной плоскостью.

Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция h совпадает с этим следом, а фронтальная лежит на оси х. Фронтальный след лежит во фронтальной плоскости, поэтому его фронтальная проекция ν́ совпадает с ним же, а горизонтальная v лежит на оси х.

Итак, H = h , и V = ν́. Следовательно, для обозначения следов прямой можно применять буквы h и ν́.

Различные положения прямой

Прямую называют прямой общего положения , если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.

Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси у ), – фронтальная прямая; на рисунке 24 показана прямая, которая параллельна профильной плоскости (перпендикулярна оси х ), – профильная прямая. Несмотря на то что каждая из данных прямых образует с одной из осей прямой угол, они не пересекают ее, а только скрещиваются с нею.

Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям х и у . Поэтому проекции áb́ || х и a˝b˝ || у z . Горизонтальная проекция ab может занимать любое положение на эпюре.

У фронтальной прямой (рис. 23) проекции аb || x и a˝b˝ || z , т. е. они перпендикулярны оси у , а потому в этом случае фронтальная проекция а́b́ прямой может занимать произвольное положение.

У профильной прямой (рис. 24) аb || у, а́b || z , и обе они перпендикулярны оси х. Проекция а˝b˝ может располагаться на эпюре любым образом.

При рассмотрении той плоскости, которая проецирует горизонтальную прямую на фронтальную плоскость (рис. 22), можно заметить, что она проецирует эту прямую и на профильную плоскость, т. е. она является плоскостью, которая проецирует прямую сразу на две плоскости проекций – фронтальную и профильную. Исходя из этого ее называют дважды проецирующей плоскостью . Таким же образом для фронтальной прямой (рис. 23) дважды проецирующая плоскость проецирует ее на плоскости горизонтальной и профильной проекций, а для профильной (рис. 23) – на плоскости горизонтальной и фронтальной проекций.

Две проекции не могут определить прямую. Две проекции 1 и профильной прямой (рис. 25) без уточнения на них проекций двух точек этой прямой не определят положения данной прямой в пространстве.

В плоскости, которая перпендикулярна двум заданным плоскостям симметрии, возможно существование бесчисленного множество прямых, для которых данные на эпюре 1 и являются их проекциями.

Если точка находится на прямой, то ее проекции во всех случаях лежат на одноименных проекциях этой прямой. Обратное положение не всегда справедливо для профильной прямой. На ее проекциях можно произвольным образом указать проекции определенной точки и не быть уверенным в том, что эта точка лежит на данной прямой.

Во всех трех частных случаях (рис. 22, 23 и 24) положения прямой по отношению к плоскости проекций произвольный ее отрезок АВ , взятый на каждой из прямых, проецируется на одну из плоскостей проекций без искажения, т. е. на ту плоскость, которой он параллелен. Отрезок АВ горизонтальной прямой (рис. 22) дает проекцию в натуральную величину на горизонтальную плоскость (аb = АВ ); отрезок АВ фронтальной прямой (рис. 23) – в натуральную величину на плоскость фронтальной плоскости V (áb́ = AB ) и отрезок АВ профильной прямой (рис. 24) – в натуральную величину на профильную плоскость W (a˝b˝ = АВ), т. е. представляется возможным измерить на чертеже натуральную величину отрезка.

Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.

Угол, который составляет прямая с горизонтальной плос костью Н , принято обозначать буквой α, с фронтальной плоскостью – буквой β, с профильной плоскостью – буквой γ.

Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).

Точка в системе двух плоскостей проекций.

Для получения проекций точки в системе двух плоскостей проекций необходимо из данной точки опустить перпендикуляры на соответствующие плоскости проекций, основания этих перпендикуляров и будут являться проекциями точки на соответствующих плоскостях проекций.

Рис 7. Проекции точки в системе двух плоскостей проекций.

Точка A’ – проекция на плоскость π 1 – называется горизонтальной проекцией точки A. Точка A’’ – проекция точки A на плоскость π 2 – фронтальная проекция точки A. Аналогично может быть построена проекция точка A на профильную плоскость проекций (π 3 ), получим профильную проекцию точки A – A’’’.

Отрезки AA’ и AA’’ перпендикулярны плоскостям проекция π 1 и π 2 соответственно принадлежат некоторой плоскости α пересекающей ось проекций в некоторой точке Ax . Плоскость α перпендикулярна к плоскостям проекций π 1 и π 2 и к оси проекций X, пересекая еѐ в точке Ax .

Если положение плоскостей π 1 и π 2 фиксировано в пространстве, то каждой точке пространства соответствует упорядоченная пара точек на плоскостях проекций. Верно и обратное утверждение – упорядоченное паре точек на плоскостях проекций соответствует единственная точка пространства.

Проецирование на две и три плоскости проекций

Эпюр Монжа.

Рассмотренное изображение точки в системе двух плоскостей проекций не совсем удобно для черчения.

С развитием техники первостепенное значение приобрел вопрос о применении метода, обеспечивающего точность и удобство изображений, т. е. возможность точно установить место каждой точки изображения относительно других точек или плоскостей и путем простых приемов определить размеры отрезков линий и фигур. Постепенно накопившиеся отдельные правила и приемы построений таких изображений были приведены в систему и развиты в труде французского ученого Гаспара Монжа, изданном в 1799 г. под названием « Geometrie descriptive».

Как уже отмечалось ранее отрезки AA’ и AA’’ перпендикулярны плоскостям проекция π 1 и π 2 соответственно принадлежат некоторой плоскости α пересекающей ось проекций в некоторой точке Ax . Плоскость α перпендикулярна к плоскостям проекций π 1 и π 2 и к оси проекций X, пересекая еѐ в точке Ax .

Плоскость α пересекает плоскости проекций π 1 и π 2 (отрезки A’Ax и A’’Ax ). Отрезки A’Ax и A’’Ax перпендикулярны оси проекций X. Проекции некоторой точки получаются расположенными на прямых, перпендикулярных к оси проекций и пересекающих эту ось в одной и той же точке (в нашем примере в точке

Гаспрар Монж предложил способ преобразования чертежа путем поворота горизонтальной плоскости проекций π 1 вокруг оси проекций X до совмещения с фронтальной плоскостью проекций π 2 (рис. 9.).

Проецирование на две и три плоскости проекций

Рис. 10. Преобразование чертежа по методу Монжа.

После такого преобразования плоскость π 1 на чертеже совмещается с плоскостью π 2 и в результате получаем чертеж в виде наложенных друг на друга плоскостей π 1 и π 2 . Такой способ изображения получил название «Эпюр Монжа» (от французского Épure – чертеж, проект).

Рис. 11. Положение проекций точки на эпюре Монжа.

При рассмотрении преобразованного чертежа необходимо учитывать, что плоскости проекций π 1 и π 2 занимают все пространство, и мы видим наложение двух плоскостей.

На эпюре Монжа проекции точки A - A’ и A’’на плоскостях проекций π 1 и π 2 расположены на одной прямой перпендикулярной к оси проекций X. Отрезок

A’A’’ называется линией связи . Таким образом, две проекции точки всегда расположены на одной линии связи перпендикулярной к оси проекций .

Если внимательно проанализировать исходный рисунок положения точки в системе двух плоскостей проекций и эпюр Монжа, то можно видеть, что величина отрезка Ax A’= AA’’ и определяет расстояние точки A от плоскости проекций π 2 , а величина отрезка Ax A’’= AA’ - определяет расстояние точки A от плоскости π 1 .

Проецирование на две и три плоскости проекций

Две взаимно перпендикулярные плоскости π 1 и π 2 делят все пространство на четыре квадранта (вспомним то, как две перпендикулярные оси X и Y на плоскости делят эту плоскость на четыре четверти).

Рис. 12. Деление пространства двумя плоскостями на 4 квадранта.

В зависимости от того, в каком квадранте пространства расположена точка еѐ проекции занимают определенное положение на эпюре Монжа.

E’=Ex

Рис. 13. Положение точек на эпюре Монжа.

По эпюру Монжа можно определить, что точки занимают следующие положения в пространстве:

Точка А расположена в первом квадранте; Точка B расположена во втором квадранте; Точка C расположена в третьем квадранте; Точка D расположена в четвертом квадранте;

Точка E расположена непосредственно в плоскости π 2 .

Проецирование на две и три плоскости проекций

Точка в ситеме трех плоскостей проекций.

На ряду с проецирование на две плоскости проекций используется система трех плоскостей. Положение любой точки в пространстве, а следовательно и любой геометрической фигуры может быть определено в какой либо системе координат.

Наиболее удобной является декартова система координат в пространстве, состоящая из трех взаимно перпендикулярных осей. Эту систему можно получить как линии пересечения трех взаимно перпендикулярных плоскостей – горизонтальной π 1 , фронтальной π 2 и профильной π 3 .

Линии пересечения этих трех плоскостей образуют в пространстве систему трех взаимноперпендикулярных осей: абсцисс – ось X, ординат – ось Y и аппликат – ось Z. Точка пересечения трех осей – точка «O» от латинского «origo» - начало, является началом отсчета по всем осям координат (рис. 14), стрелками показано положительное направление значений координат. Оси X,Y и Z называются осями прекций.

A’’ Az

A A’’’

Рис. 14. Положение точки в системе трех плоскостей проекций.

Величина отрезка AA’ = A’’Ax – расстояние от точки A до плоскости π 1 . Величина отрезка AA’’ = A’Ax – расстояние от точки A до плоскости π 2 . Величина отрезка AA’’’ = A’Ay – расстояние от точки A до плоскости π 3 .

Проецирование на две и три плоскости проекций

Три пересекающиеся плоскости делят все пространство на восемь октантов.

Рис. 15. Разбиение пространства на восемь октантов.

По знакам координат точки можно определить в каком октанте пространства она расположена.

Знак координаты

Начертательная геометрия. Инженерная графика. Левченко С.В.

Страница 6

Проецирование на две и три плоскости проекций

Преобразование чертежа в системе трех плоскостей проекций.

Как и в случае проекции в системе двух плоскосте, в системе трех плоскостей используют метод преобразования чертежа, предложенный Гаспаром Монжем.

Это связано стем, что в подобном виде чертеж получается громоздким и на плоскостях π 1 и π 2 происходит искжение форм и размеров фигур.

Рис. 16. Преобразование плоскостей в системе трех плоскостей проекций.

На рисунке 16 стрелками показано направление вращения плоскостей вокруг осей проекций.

В процессе преобразования плоскость π 2 остается на месте, плоскость π 1 поварачивается вокруг оси X до совмещения с плоскость π 2 , плоскость π 3 поварачивается вокруг оси Z до совмежения с плоскостью π 2 . После такого преобразования все три плоскости оказываются наложенными друг на друга (рис.

Проецирование на две и три плоскости проекций

Рис. 17. Вид чертежа после преобразования.

В плоскости π 1 лежат оси X и Y. В плоскости π 2 лежат оси X и Z. В плоскости π 3 лежат оси Y и Z.

В π 1 ось X остается на месте, а ось Y на чертеже направлена вниз.

В результате преобразования плоскости π 3 ось Z остается на месте, а ось Y на чертеже направлена вправо.

Таким образом после преобразования чертежа ось Y занимает на чертеже два положения: ось Y направленная вниз принадлежит плоскости π 1 ; ось Y направленная влево принадлежит плоскости π 3 .

Положение проекций точки на чертеже зависит от того, в каком октанте пространства она расположена.

Проекции любой точки можно построить неросредственно на чертеже: положение горизонтальной проекции определяется парой координат X,Y (ось Y направленная вниз); положение фронтальной проекции определяется парой координат X,Z; положение профильной проекции определяется парой координат Y,Z (ось Y направленная вправо).

Если точка расположена в первом октанте, то значения всех трех координат (X,Y,Z) положительны.

Проецирование на две и три плоскости проекций

Построение недостающей проекции в системе трех плоскостей проекций:

Рис. 18. Порядок построения недостающей проекции точки.

Пусть даны горизонтальная (A’) и фронтальная (A’’) проекции точки A.

Необходимо построить недостающую профильную проекцию (A’’’). При построении выполнении построений необходимо помнить следующие правила начертательной геометрии:

1. Горизонтальная и фронтальная проекции точки всегда находятся на одной линии связи перпендикулярной к оси X.

2. Фронтальная и профильная проекции точки всегда находятся на одной линии связи, перпендикулярной к оси Z.

3. Горизонтальная и профильная проекции точки всегда находятся на одной горизонтально-вертикальной линии связи перпендикулярной оси Y.

Порядок построения:

Проецирование на две и три плоскости проекций

Проведем через точку A’’ линию перпендикулярную к оси Z. Искомая профильная проекция должна находиться на этой линии.

Для построения горизонтально-вертикальной линии связи перпендикулярной оси Y воспользуемся постоянной прямой чертежа.

О. Постоянной прямой чертежа называется биссектриса угла, образованного осями Y. Обычно обозначают буквой k .

Через горизонтальную проекцию точки проведем перпендикуляр к вертикальной оси Y до пересечения с постоянной прямой чертежа (точка 1), затем из точки 1 проведем перпендикуляр к вертикальной оси Y до пересечения с линией связи, перпендикулярной оси Z.

Точка пересечения линии связи перпендикулярной к оси Z и горизонтально-

вертикальной линии связи, перпендикулярной к оси Y и является профильной проекцией точки A.

Ещѐ раз отметим, что горизонтальная проекция точки определяется еѐ абсциссой и ординатой, фронтальная – абсциссой и аппликатой, профильная – ординатой и аппликатой.

Точка в пространстве удалена от плоскости:

π 1 на величину равную величине отрезка A’’Ax или A’’’Ay .

π 2 на величину равную величине отрезка A’Ax или A’’’Az .

π 3 на величину равную величине отрезка A’Ay или A’’Az .

Цели и задачи урока:

обучающая: показать учащимся использование метода прямоугольного проецирования при выполнении чертежа;

Необходимость применения трёх плоскостей проекций;

Создать условия для формирования умений проецировать предмет на три плоскости проекций;

развивающая: развивать пространственные представления, пространственное мышление, познавательный интерес и творческие способности учащихся;

воспитывающая: ответственное отношение к черчению, воспитывать культуру графического труда.

Методы, приёмы обучения: объяснение, беседа, проблемные ситуации, исследование, упражнения, фронтальная работа с классом, творческая работа.

Материальное обеспечение: компьютеры, презентация “Прямоугольное проецирование”, задачи, упражнения, карточки с упражнением, презентация для самопроверки.

Тип урока: урок закрепления знаний.

Словарная работа: горизонтальная плоскость, проекция, проецирование, профильная, исследовательский, проект.

Ход урока

I. Организационная часть.

Сообщение темы и цели урока.

Проведем урок-состязание , за каждое задание вы будете получать определенное количество баллов. В зависимости от набранных баллов будет выставлена оценка за урок.

II. Повторение о проецировании и его видах.

Проецирование – это мыслительный процесс построения изображений предметов на плоскости.

Повторение осуществляется с использованием презентации.

1. Перед учащимися ставится проблемная ситуация . (Презентация 1)

Проанализируйте геометрическую форму детали на фронтальной проекции и найдите эту деталь среди наглядных изображений.

Из создавшейся ситуации делается вывод, что все 6 деталей имеют одинаковую фронтальную проекцию. Значит, одна проекция не всегда дает полное представление о форме и конструкции детали.

Какой выход из этой ситуации? (Посмотреть на деталь с другой стороны).

2. Появилась потребность применения ещё одной плоскости проекций. (Горизонтальная проекция).

3. Необходимость в третьей проекции возникает тогда, когда и двух проекций бывает недостаточно для определения формы предмета.

Постановка размеров:

  • на фронтальной проекции – длина и высота;
  • на горизонтальной проекции – длина и ширина;
  • на профильной проекции – ширина и высота.

Вывод: значит, чтобы научиться выполнять чертежи, нужно уметь проецировать предметы на плоскость.

Задание 1

Вставьте пропущенные слова в текст определений.

1. Существует _______________ и ______________ проецирование.

2. Если ______________ лучи выходят из одной точки, проецирование называется ______________.

3. Если ______________ лучи направлены параллельно, проецирование называется _____________.

4. Если ______________ лучи направлены параллельно друг другу и под углом 90 ° к плоскости проекций, то проецирование называется ______________.
5. Натуральное изображение предмета на плоскости проекций получается только при ______________ проецировании.

6. Проекции располагаются относительно друг друга______________________________.

7.Основоположником метода прямоугольного проецирования является _______________

Задание 2. Исследовательский проект

Установите соответствие главных видов, обозначенных цифрами, деталям, обозначенным буквами, и запишите ответ в тетради.

Рис.4

Задание 3

Упражнение на повторение знаний геометрических тел.

По словесному описанию найти наглядное изображение детали.

Текст описания.

Основание детали имеет форму прямоугольного параллелепипеда, в меньших гранях которого выполнены пазы, имеющие форму правильной четырехугольной призмы. В центре верхней грани параллелепипеда расположен усеченный конус, вдоль оси которого проходит сквозное цилиндрическое отверстие.

Рис. 5

Ответ: деталь № 3 (1 балл)

Задание 4

Найдите соответствие технических рисунков деталей и их фронтальных проекций (направление проецирования отмечено стрелкой). По разрозненным изображениям чертежа составьте чертеж каждой детали, состоящий из трех изображений. Ответ запишите в таблицу (рис. 129).

Рис. 6

Технические рисунки Фронтальная проекция Горизонтальная проекция Профильная проекция
А 4 13 10
Б 12 9 2
В 14 5 1
Г 6 15 8
Д 11 3 7

III. Практическая работа.

Задание №1. Исследовательский проект

Найдите фронтальную и горизонтальную проекции к данному наглядному изображению. Записать ответ в тетрадь.

Оценивание работы на уроке. Самопроверка. (Презентация 2)

На доске записаны баллы для оценивания первой части работы:

23-26 баллов “5”

19-22 баллов “4”

15 -18 баллов “3”

Задание №2. Творческая работа и проверка его выполнения
(творческий проект)

Перечертить фронтальную проекцию в рабочую тетрадь.
Дочертить горизонтальную проекцию, изменив форму детали с целью уменьшения её массы.
При необходимости внести изменения на фронтальной проекции.
Для проверки выполнения задания вызвать одного-двух учеников к доске с целью объяснения своего варианта решения задачи.

(10 баллов)

IV. Подведение итога урока.

1. Оценивание работы на уроке. (Проверка практической части работы)

V. Задание на дом.

1. Исследовательский проект.

Работа по таблице: определить к какому чертежу, обозначенному цифрой, соответствует рисунок, обозначенный буквой.

Рассмотрим систему трех взаимно перпендикулярных плоскостей проекций (рис. 5): П 1 горизонтальная плоскость проекций, П 2 фронтальная плоскость проекций и П 3 профильная плоскость проекций.

Рис. 5. Плоскости проекций:

x 12 = П 1 ∩ П 2 ;

y 13 = П 1 ∩ П 3 ;

z 23 = П 2 ∩ П 3

Точка пересечения трех плоскостей O 123 – начало координат. Линия пересечения горизонтальной и фронтальной плоскостей называется осью проекций x 12 = П 1 ∩ П 2 , линия пересечения горизонтальной и профильной плоскостей называется осью проекций y 13 = П 1 ∩ П 3 , линия пересечения фронтальной и профильной плоскостей называется осью проекций z 23 = П 2 ∩ П 3 .

Поскольку плоскости проекций бесконечны, три плоскости разделят все пространство на восемь частей – октантов. Порядок отсчета октантов (см. рис. 5): слева от плоскости П 3 (против часовой стрелки) с первого по четвертый, справа – с пятого по восьмой.

Направление осей x,y,z в первом октанте считается положительным. Знаки осей, продолженных за начало координат, считают отрицательными.

Для получения проекций точки А на три плоскости (рис. 6) П 1 , П 2 и П 3 через точку А проводятся проецирующие лучи }

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png