Цели урока:

  • сформировать представление о физических и химических свойствах железа в зависимости от проявляемой им степени окисления и природы окислителя;
  • развивать теоретическое мышление учащихся и их умения прогнозировать свойства вещества, опираясь на знания о его строении;
  • развивать понятийное мышление таких операций, как анализ, сравнение, обобщение, систематизация;
  • развивать такие качества мышления, как объективность, лаконизм и ясность, самоконтроль и активность.

Задачи урока:

  • актуализировать знания учащихся по теме: “Строение атома”;
  • организовать коллективную работу учащихся от постановки учебной задачи до конечного результата (составить опорную схему к уроку);
  • обобщить материал по теме: “Металлы” и рассмотреть свойства железа и его применение;
  • организовать самостоятельную исследовательскую работу в парах по изучению химических свойств железа;
  • организовать взаимоконтроль учащихся на уроке.

Тип урока: изучение нового материала.

Реактивы и оборудование:

  • железо (порошок, пластина, скрепка),
  • сера,
  • соляная кислота,
  • сульфат меди (II),
  • кристаллическая решетка железа,
  • плакаты для игры,
  • магнит,
  • подборка иллюстраций по теме,
  • пробирки,
  • спиртовка,
  • спички,
  • ложка для сжигания горючих веществ,
  • географические карты.

Структура урока

  1. Вводная часть.
  2. Изучение нового материала.
  3. Сообщение домашнего задания.
  4. Закрепление изученного материала.

Ход урока

1. Вводная часть

Организационный момент.

Проверка наличия учащихся.

Сообщение темы урока. Запись темы на доске и в тетрадях учащихся.

2. Изучение нового материала

– Как вы думаете, как будет звучать тема нашего сегодняшнего урока?

1. Появление железа в человеческой цивилизации положило начало железному веку.

Откуда же древние люди брали железо в то время, когда еще не умели добывать его из руды? Железо в переводе с шумерского языка – это металл, “капнувший с неба, небесный”. Первое железо, с которым столкнулось человечество, было железом из метеоритов. Впервые доказал, что “железные камни падают с неба”, в 1775 г. русский ученый П.С. Палас, который привез в Петербург глыбу самородного железного метеорита весом 600 кг. Самым крупным железным метеоритом является найденный в 1920 г. в Юго-Западной Африке метеорит “Гоба” весом около 60 т. Вспомним гробницу Тутанхамона: золото, золото. Великолепная работа восхищает, блеск слепит глаза. Но вот что пишет К.Керрам в книге “Боги, гробницы, ученые” о маленьком железном амулете Тутанхамона: “Амулет относится к числу наиболее ранних изделий Египта, и …в гробнице, наполненной чуть ли не до отказа золотом, именно эта скромная находка имела наибольшую с точки зрения истории культуры ценность”. Всего несколько железных изделий было найдено в гробнице фараона, среди них железный амулет бога Гора, небольшой кинжальчик с железным клинком и золотой рукояткой, маленькая железная скамеечка “Урс”.

Ученые предполагают, что именно страны Малой Азии, где проживали племена хеттов, были местом возникновения черной металлургии. В Европу железо пришло из Малой Азии уже в I тыс. до н.э.; так в Европе начался железный век.

Знаменитую булатную сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее изготовления держалась в секрете много веков.

Мне приснилась иная печаль
Про седую дамасскую сталь.
Я увидел, как сталь закалялась,
Как из юных рабов одного
Выбирали, кормили его,
Чтобы плоть его сил набиралась.
Выжидали положенный срок,
А потом раскаленный клинок
В мускулистую плоть погружали,
Вынимали готовый клинок.
Крепче стали, не видел Восток,
Крепче стали и горше печали.

Поскольку булат – это сталь с очень большой твердостью и упругостью, изготовленные из нее изделия обладают способностью не тупиться, будучи остро заточенными. Раскрыл секрет булата русский металлург П.П. Аносов. Он очень медленно охлаждал раскаленную сталь в специальном растворе технического масла, подогретого до определенной температуры; в процессе охлаждения сталь ковалась.

(Демонстрация рисунков.)

Железо – серебристо-серый металл


Железо – серебристо-серый металл

Эти гвозди сделаны из железа

Сталь используется в автомобилестроении

Сталь используется для изготовления медицинских инструментов

Сталь используется для изготовления локомотивов


Все металлы подвержены коррозии


Все металлы подвержены коррозии

2. Положение железа в ПСХЭМ.

Выясняем положение железа в ПСХЭМ, заряд ядра и распределение электронов в атоме.

3. Физические свойства железа.

– Какие физические свойства железа вы знаете?

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии (вспомним, что такое коррозия? Демонстрация коррозионного гвоздя) и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

4. Химические свойства железа.

Исходя из знаний о химических свойствах металлов, как вы думаете, какими химическими свойствами будет обладать железо?

Демонстрация опытов.

  • Взаимодействие железа с серой.

Практическая работа.

  • Взаимодействие железа с соляной кислотой.
  • Взаимодействие железа с сульфатом меди (II).

5. Применение железа.

Беседа по вопросам:

– Как выдумаете, каково распространение железа в природе?

Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

– В виде, каких соединений железо встречается в природе?

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более. Основными железными рудами являются: магнетит – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии; гематит – Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе; лимонит – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму; пирит – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале. (Работа с контурными картами).

– Какова роль железа в жизни человека и растений?

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

Примерно 90% используемых человечеством металлов – это сплавы на основе железа. Железа выплавляется в мире очень много, примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Сплавы на основе железа универсальны, технологичны, доступны, дешевы. Железу еще долго быть фундаментом цивилизации.

3. Сообщение домашнего материала

14, упр. № 6, 8, 9 (по рабочей тетради к учебнику О.С Габриелян “Химия 9”, 2003 г.).

4. Закрепление изученного материала

  1. Используя опорную схему , записанную на доске, сделайте вывод: что же представляет собой железо и каковы его свойства?
  2. Графический диктант (заранее приготовить листочки с начерченной прямой, разделенной на 8 отрезков и пронумерованной соответственно вопросам диктанта. Отметить шалашиком “^” на отрезке номер положения, которое считается верным).

Вариант 1.

  1. Железо – это активный щелочной металл.
  2. Железо легко куется.
  3. Железо входит в состав сплава бронзы.
  4. На внешнем энергетическом уровне атома железа 2 электрона.
  5. Железо взаимодействует с разбавленными кислотами.
  6. С галогенами образует галогениды со степенью окисления +2.
  7. Железо не взаимодействует с кислородом.
  8. Железо можно получить путем электролиза расплава его соли.
1 2 3 4 5 6 7 8

Вариант 2.

  1. Железо – это металл серебристо-белого цвета.
  2. Железо не обладает способностью намагничиваться.
  3. Атомы железа проявляют окислительные свойства.
  4. На внешнем энергетическом уровне атома железа 1 электрон.
  5. Железо вытесняет медь из растворов ее солей.
  6. С галогенами образует соединения со степенью окисления +3.
  7. С раствором серной кислоты образует сульфат железа (III).
  8. Железо не подвергается коррозии.
1 2 3 4 5 6 7 8

После выполнения задания учащиеся меняются своими работами и проверяют их (ответы к работам вывешены на доске, или показать через проектор).

Критерии отметки:

  • “5” – 0 ошибок,
  • “4” – 1-2 ошибки,
  • “3” – 3-4 ошибки,
  • “2” – 5 и больше ошибок.

Используемая литература

  1. Габриелян О.С. Химия 9 класс. – М.: Дрофа, 2001.
  2. Габриелян О.С. Книга для учителя. – М.: Дрофа, 2002.
  3. Габриелян О.С. Химия 9 класс. Рабочая тетрадь. – М.: Дрофа, 2003.
  4. Индустрия образования. Сборник статей. Выпуск 3. – М.: МГИУ, 2002.
  5. Малышкина В. Занимательная химия. – Санкт-Петербург, “Тригон”, 2001.
  6. Программно-методические материалы. Химия 8-11 классы. – М.: Дрофа, 2001.
  7. Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения. – М.: Химия, 1995.
  8. Я иду на урок Химии. Книга для учителя. – М.: “Первое сентября”, 2000.

Приложения

Знаете ли вы, что?

Железо – один из важнейших элементов жизни. Кровь содержит железо, и именно оно определяет цвет крови, а также ее основное свойство – способность связывать и отдавать кислород. Такой способностью обладает комплексное соединение – гем – составная часть молекулы гемоглобина. Кроме гемоглобина железо в нашем организме есть еще в миоглобине – белке, запасающем кислород в мышцах. Есть также железосодержащие ферменты.

Близ г. Дели в Индии стоит железная колонна без малейшего пятнышка ржавчины, хотя ее возраст почти 2800 лет. Это знаменитая Кутубская колонна высотой около семи метров и массой 6.5 т. Надпись на колонне говорит о том, что она была поставлена в IX в. До н. э. Ржавление железа – образование метагидроксида железа – связано с взаимодействием его с влагой и кислородом воздуха.

Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого металла: железа в колонне оказалось 99,72%. Этим и объясняется ее долговечность и коррозионная устойчивость.

В 1934 г. в "Горном журнале" появилась статья "Улучшение железа и стали посредством...ржавления в земле". Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности. Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит, кости врага.

Гематит

Гематит, или красный железняк – основная руда главного металла современности – железа. Содержание железа достигает в нем 70%. Гематит известен с давних пор. В Вавилоне и Древнем Египте он использовался в украшениях, для изготовления печатей, наряду с халцедоном служил излюбленным материалом в качестве резного камня. У Александра Македонского был перстень с вставкой из гематита, который, как он полагал, делал его неуязвимым в бою. В древности и в Средние века гематит слыл лекарством, останавливающим кровь. Порошок из этого минерала издревле использовали для золотых и серебряных изделий.

Название минерала происходит от греческого дета – кровь, что связано с вишневым или сургучно-красным цветом порошка этого минерала.

Важной особенностью минерала является способность стойко хранить цвет и передавать его другим минералам, в которые попадает хотя бы небольшая примесь гематита. Розовый цвет гранитных колонн Исаакиевского собора – это цвет полевых шпатов, которые в свою очередь окрашены тонкораспыленным гематитом. Живописные узоры яшмы, используемой при отделке станций столичного метро, оранжевые и розовые сердолики Крыма, кораллово-красные прослойки сильвина и карналлита в соляных толщах – все обязаны своим цветом гематиту.

Издавна из гематита делали красную краску. Все известные фрески, выполненные 15-20 тыс. лет назад, – замечательные бизоны Альтамирской пещеры и мамонты из знаменитой Капской пещеры – выполнены и коричневыми оксидами и гидроксидами железа.

Магнетит

Магнетит, или магнитный железняк – минерал, содержащий 72% железа. Это самая богатая железная руда. Замечательное в этом минерале его природный магнетизм – свойство, благодаря которому он был открыт.

Как сообщал римский ученый Плиний, магнетит назван в честь греческого пастуха Магнеса. Магнес пас стадо возле холма над р. Хинду в Фессалии. Неожиданно посох с железным наконечником и подбитые гвоздями сандалии притянула к себе гора, сложенная сплошным серым камнем. Минерал магнетит дал в свою очередь название магниту, магнитному полю и всему загадочному явлению магнетизма, которое пристально изучается со времен Аристотеля и по сей день.

Магнитные свойства этого минерала и сегодня используются, прежде всего для поиска месторождений. Именно так были открыты уникальные месторождения железа на площади Курской магнитной аномалии (КМА). Минерал тяжелый: образец магнетита размером с яблоко весит 1,5 кг.

В древности магнетит наделяли всевозможными лечебными свойствами и способностью творить чудеса. Его использовали для извлечения металла при ранениях, а Иван Грозный среди своих сокровищ наравне с другими камнями хранил его непримечательные кристаллы.

Пирит – минерал, подобный огню

Пирит – один из тех минералов, увидев который хочется воскликнуть: "Неужели это так и было?" Трудно поверить, что высший класс огранки и полировки, поражающий нас в рукотворных изделиях, в кристаллах пирита – щедрый дар природы.

Пирит получил свое название от греческого слова "пирос" – огонь, что связано с его свойством искрить при ударе стальными предметами. Этот красивый минерал поражает золотистым цветом, ярким блеском на почти всегда четких гранях. Благодаря своим свойствам пирит известен с глубокой древности, а во время эпидемий золотой лихорадки пиритовые блестки в кварцевой жиле вскружили не одну горячую голову. Да и сейчас начинающие любители камня нередко принимают пирит за золото.

Пирит – минерал вездесущий: он образуется из магмы, из паров и растворов, и даже из осадков, каждый раз в специфических формах и сочетаниях. Известен случай, когда за несколько десятилетий в пирит превратилось тело упавшего в шахту рудокопа. Железа в пирите немало – 46,5%, но извлекать его дорого и невыгодно.

Определение. История. Геохимия. Свойства железа. Месторождения. Физические и химические свойства. Соединения. Применение железа.

Железо

Железо — элемент восьмой группы (по старой классификации — побочной подгруппы восьмой группы) четвёртого периода периодической системы химических элементовД. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum ). Один из самых распространённых в земной коре металлов (второе место после алюминия).
Простое вещество железо (CAS-номер: 7439-89-6) — ковкий металл серебристо-белого цветас высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая(легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.
В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет большую часть земного ядра.

История. Железо, как инструментальный материал, известно с древнейших времён. Самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это изготовленные из метеоритного железа, то есть сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), украшения из египетских гробниц (около 3800 года до н. э.) и кинжал из шумерского города Ура (около 3100 года до н. э.). От небесного происхождения метеоритного железа происходит, видимо, одно из названий железа в греческом и латинском языках: «сидер» (что значит «звёздный»).

Изделия из железа, полученного выплавкой, известны со времени расселения арийских племён из Европы в Азию, острова Средиземного моря, и далее (конец 4-го и 3-е тысячелетие до н. э. Самые древние железные инструменты из известных — стальные лезвия, найденные в каменной кладке пирамиды Хеопса в Египте (построена около 2530 года до н. э.). Как показали раскопки в Нубийской пустыне, уже в те времена египтяне, стараясь отделить добываемое золото от тяжёлого магнетитового песка, прокаливали руду с отрубями и подобными веществами, содержащими углерод. В результате на поверхности расплава золота всплывал слой тестообразного железа, который обрабатывали отдельно. Из этого железа ковались орудия, в том числе найденные в пирамиде Хеопса. Однако после внука Хеопса Менкаура (2471—2465 год до н. э.) в Египте наступила смута: знать во главе со жрецами бога Ра свергла правящую династию, и началась чехарда узурпаторов, закончившаяся воцарением фараона следующей династии Усеркара, которого жрецы объявили сыном и воплощением самого бога Ра (с тех пор это стало официальным статусом фараонов). В ходе этой смуты культурные и технические знания египтян пришли в упадок, и, так же как деградировало искусство строительства пирамид, технология производства железа была утеряна, вплоть до того, что позднее, осваивая в поисках медной руды Синайский полуостров, египтяне не обратили никакого внимания на имевшиеся там залежи железной руды, а получали железо от соседних хеттов и митаннийцев.
Первые освоили метод выплавки железа хатты, на это указывает древнейшее (2-е тысячелетие до н. э.) упоминание железа в текстах хеттов, основавших свою империю на территории хаттов (современной Анатолии в Турции). Так, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:
В древности мастерами железных изделий слыли халибы. В легенде об аргонавтах (их поход в Колхиду состоялся примерно за 50 лет до троянской войны) рассказывается, что царь Колхиды Эет дал Ясону железный плуг чтобы он вспахал поле Ареса, и описываются его подданные халиберы:
Они не пашут землю, не сажают плодовые деревья, не пасут стада на тучных лугах; они добывают руду и железо из необработанной земли и выменивают на них продукты питания. День не начинается для них без тяжкого труда, в темноте ночи и густом дыму проводят они, работая весь день…
Аристотель описал их способ получения стали: «халибы несколько раз промывали речной песок их страны — тем самым выделяя чёрный шлих (тяжелая фракция состоящая в основном из магнетита и гематита), и плавили в печах; полученный таким образом металл имел серебристый цвет и был нержавеющим».
В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря: эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита, и обломков других пород, так что выплавляемая халибами сталь была легированной, и имела превосходные свойства. Такой своеобразный способ получения железа говорит о том, что халибы лишь распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.
Климент Александрийский в своём энциклопедическом труде «Строматы» упоминает, что по греческим преданиям железо (видимо, выплавка его из руды) было открыто на горе Иде — так называлась горная цепь возле Трои (в Илиаде она упоминается как гора Ида, с которой Зевс наблюдал за битвой греков с троянцами). Произошло это через 73 года после Девкалионова потопа, а этот потоп, согласно Паросской хронике, был в 1528 году до н. э., то есть метод выплавки железа из руды был открыт примерно в 1455 году до н. э. Однако из описания Климента не ясно, говорит ли он именно об этой горе в Передней Азии (Ида Фригийская у Вергилия), или же о горе Ида на острове Крит, о которой римский поэт Вергилий в Энеиде пишет как о прародине троянцев:
«Остров Юпитера, Крета, лежит средь широкого моря,
Нашего племени там колыбель, где высится Ида…»
Более вероятно, что Климент Александрийский говорит именно о фригийской Иде возле Трои, так как там были найдены древние железные копи и очаги железоделательного производства. Первое письменное свидетельство о железе имеется в глиняных табличках архива египетских фараонов Аменхотепа III и Эхнатона, и относится к тому же времени (1450—1400 год до н. э.). Там упоминается о выделке железа на юге Закавказья, которое греки называли Колхидой (и возможно, что слово «kolhidos» может быть модификацией слова «halibos») — а именно, что царь страны Митанни и властитель Армении и Южного Закавказья послал египетскому фараону Аменхотепу II «вместе с 318 наложницами кинжалы и кольца из хорошего железа». Такие же подарки фараонам дарили и хетты.
В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона, у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди, серебра, золота и железа у древних хеттов были в соотношении 1: 160: 1280: 6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога.
В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе — возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона Тутанхамона и его тестя Хаттусиля — царя хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя, и посылает только один кинжал из «хорошего железа» (то есть стали). Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты новые месторождения железа и рудники. Так на смену «Бронзовому» веку настал век «Железный».
По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады» Гомер рассказывает, что Ахилл наградил диском из железнойкрицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов.
Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.
Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои >железной руды и древесного угля прокаливались в специальных печах (горнах — от древнего «Horn» — рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру — заметно меньше температуры плавления чугуна, поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. Так получалось «хорошее железо» — и хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими и твердыми, чем бронзовые.
В дальнейшем научились делать более эффективные печи (в русском языке — домна, домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100—1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке) и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом, но потом обнаружилось, что при повторной переплавке в печи с усиленным продуванием через него воздуха, чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

Изотопы

Природное железо состоит из четырёх стабильных изотопов: 54Fe (изотопная распространённость 5,845 %), 56Fe (91,754 %), 57Fe (2,119 %) и 58Fe (0,282 %). Так же известно более 20 нестабильных изотопов железа с массовыми числами от 45 до 72, наиболее устойчивые из которых — 60Fe (период полураспада по уточнённым в 2009 году данным составляет 2,6 миллиона лет), 55Fe (2,737 года), 59Fe (44,495 суток) и 52Fe (8,275 часа); остальные изотопы имеют период полураспада менее 10 минут.
Изотоп железа 56Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальныхзвёзд, а все последующие элементы могут образоваться только в результате взрывов сверхновых.

Геохимия железа

Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86 % всего железа, а в мантии 14 %. Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002—0,02 мг/л. В речной воде несколько выше — 2 мг/л.

Геохимические свойства железа

Важнейшая геохимическая особенность железа — наличие у него нескольких степеней окисления. Железо в нейтральной форме — металлическое — слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO — основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.
По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ — другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.
Минералы железа . В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
В природе также широко распространены сульфиды железа — пирит FeS2 (серный или железный колчедан) и пирротин. Они не являются железной рудой — пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.
По запасам железных руд Россия занимает первое место в мире.
Содержание железа в морской воде — 1·10−5—1·10−8 %.
Другие часто встречающиеся минералы железа:

  • Сидерит — FeCO3 — содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см³ и твёрдость 3,5—4,5 по шкале Мооса.
  • Марказит — FeS2 — содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6—4,9 г/см³ и твёрдостью 5—6 по шкале Мооса.
  • Лёллингит — FeAs2 — содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7—7,4 г/см³, твёрдость 5—5,5 по шкале Мооса.
  • Миспикель — FeAsS — содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6—6,2 г/см³ и твёрдостью 5,5—6 по шкале Мооса.
  • Мелантерит — FeSO4·7H2O — реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8—1,9 г/см³.
  • Вивианит — Fe3(PO4)2·8H2O — встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см³ и твёрдостью 1,5—2 по шкале Мооса.

Основные месторождения

По данным Геологической службы США (оценка 2011 г.), мировые разведанные запасы железной руды составляют порядка 178 млрд тонн. Основные месторождения железа находятся в Бразилии (1 место), Австралии, США, Канаде, Швеции, Венесуэле, Либерии, Украине, Франции, Индии. В России железо добывается на Курской магнитной аномалии (КМА), Кольском полуострове, в Карелии и в Сибири, в Украине - Кривбасс, Полтавская область, Керченский полуостров. Значительную роль в последнее время приобретают донные океанские месторождения, в которых железо совместно с марганцем и другими ценными металлами находится в конкрециях.

Получение. В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (FeO·Fe2O3).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода:

В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III):

Флюс добавляется для избавления от нежелательных примесей (в первую очередь от cиликатов; например, кварц) в добываемой руде. Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Для устранения других примесей используют другие флюсы.
Действие флюса (в данном случае карбонат кальция) заключается в том, что при его нагревании он разлагается до его оксида:

Оксид кальция соединяется с диоксидом кремния, образуя шлак — метасиликат кальция:

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности — это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.
Излишки углерода и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легковосстанавливает железо:
,
при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.
Химически чистое железо получается электролизом растворов его солей.

Физические свойства

Железо — типичный металл, в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности —углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» — группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.
Для железа характерен полиморфизм, он имеет четыре кристаллические модификации:

  • до 769 °C существует α-Fe (феррит) с объёмноцентрированной кубической решёткой и свойствами ферромагнетика (769 °C ≈ 1043 K — точка Кюри для железа);
  • в температурном интервале 769—917 °C существует β-Fe, который отличается от α-Fe только параметрами объёмноцентрированной кубической решётки и магнитными свойствами парамагнетика;
  • в температурном интервале 917—1394 °C существует γ-Fe (аустенит) с гранецентрированной кубической решёткой;
  • выше 1394 °C устойчиво δ-Fe с объёмоцентрированной кубической решёткой.

Металловедение не выделяет β-Fe как отдельную фазу, и рассматривает её как разновидность α-Fe. При нагреве железа или стали выше точки Кюри (769 °C ≈ 1043 K) тепловое движение ионов расстраивает ориентацию спиновых магнитных моментов электронов, ферромагнетик становится парамагнетиком — происходит фазовый переход второго рода, но фазового перехода первого рода с изменением основных физических параметров кристаллов не происходит.
Для чистого железа при нормальном давлении, с точки зрения металловедения, существуют следующие устойчивые модификации:

  • от абсолютного нуля до 910 °C устойчива α-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой;
  • от 910 до 1400 °C устойчива γ-модификация с гранецентрированной кубической (ГЦК) кристаллической решёткой;
  • от 1400 до 1539 °C устойчива δ-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой.

Наличие в стали углерода и легирующих элементов существенным образом изменяет температуры фазовых переходов (см. фазовую диаграмму железо—углерод).Твёрдый раствор углерода в α- и δ-железе называется ферритом. Иногда различают высокотемпературный δ-феррит и низкотемпературный α-феррит (или просто феррит), хотя их атомные структуры одинаковы. Твёрдый раствор углерода в γ-железе называется аустенитом.

  • В области высоких давлений (свыше 13 ГПа, 128,3 тыс. атм.) возникает модификация ε-железа с гексагональной плотноупакованной (ГПУ) решёткой.

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α—γ переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.
Железо относится к умеренно тугоплавким металлам. В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами. Таким образом, железо относится к металлам средней активности.
Температура плавления железа 1539 °C, температура кипения — 2862 °C.

Химические свойства

Характерные степени окисления

Для железа характерны степени окисления железа — +2 и +3.
Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH)2. Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) — слабый восстановитель.
Степени окисления +3 соответствуют красно-коричневый оксид Fe2O3 и коричневый гидроксид Fe(OH)3. Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe3+ нацело гидролизуются даже в кислой среде. Fe(OH)3 растворяется (и то не полностью), только в концентрированных щелочах. Fe2O3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли несуществующей в свободном виде кислоты HFeO2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.
Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.
Кроме того, существует оксид Fe3O4, формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe+2(Fe+3O2)2.
Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли — ферраты (например, K2FeO4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Соединения железа (II)

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.
Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3 (красная кровяная соль). При взаимодействии ионов Fe2+ и 3−выпадает осадок гексацианоферрата (III) калия-железа (II) (берлинская лазурь):

который внутримолекулярно перегруппировывается в гексацианоферрат (II) калия-железа (III):

Для количественного определения железа (II) в растворе используют фенантролин Phen, образующий с железом (II) красный комплекс FePhen3 (максимум светопоглощения — 520 нм) в широком диапазоне рН (4-9).

Соединения железа (III)

Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

Соли Fe3+ склонны к образованию кристаллогидратов. В них ион Fe3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.
Ион Fe3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практчиески полностью осаждается в виде Fe(OH)3:

При частичном гидролизе иона Fe3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.
Основные свойства гидроксида железа(III) Fe(OH)3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:

Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.
При сплавлении со щелочами и оксидами других металлов Fe2O3 образует разнообразные ферриты:

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.
Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с неорганическими тиоцианатами SCN−. При этом образуется смесь ярко-красных роданидных комплексов железа 2+, +, Fe(SCN)3, -. Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.
Другим качественным реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4 (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и 4−выпадает ярко-синий осадок гексацианоферрата (II) калия-железа (III):

Количественно ионы Fe3+ определяют по образованию красных (в слабокислой среде) или жёлтых (в слабощелочной среде) комплексов с сульфосалициловой кислотой. Эта реакция требует грамотного подбора буферов, так как некоторые анионы (в частности, ацетат) образуют с железом и сульфосалициловой кислотой смешанные комплексы со своими оптическими характеристиками.

Соединения железа (VI)

Ферраты — соли не существующей в свободном виде железной кислоты H2FeO4. Это соединения фиолетового цвета, по окислительным свойствам напоминающие перманганаты, а по растворимости — сульфаты. Получают ферраты при действии газообразного хлора или озона на взвесь Fe(OH)3 в щелочи:

Ферраты также можно получить электролизом 30%-ного раствора щелочи на железном аноде:

Ферраты — сильные окислители. В кислой среде разлагаются с выделением кислорода:

Окислительные свойства ферратов используют для обеззараживания воды.

Применение

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

  • Железо является основным компонентом сталей и чугунов— важнейших конструкционных материалов.
  • Железо может входить в состав сплавов на основе других металлов — например, никелевых.
  • Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
  • Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
  • Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
  • Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
  • Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
  • Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
  • Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо - восьмой элемент четвёртого периода в таблице Менделеева. Его номер в таблице (также его называют атомным) 26, что соответствует числу протонов в ядре и электронов в электронной оболочке. Обозначается первыми двумя буквами своего латинского эквивалента - Fe (лат. Ferrum - читается как «феррум»). Железо - второй по распространённости элемент в земной коре, процентное содержание - 4,65% (самый распространённый - алюминий, Al). В самородном виде данный металл встречается достаточно редко, чаще его добывают из смешанной руды с никелем.

Вконтакте

Какова же природа данного соединения? Железо как атом состоит из металлической кристаллической решётки, за счёт чего обеспечивается твёрдость соединений, содержащих этот элемент, и молекулярная стойкость. Именно в связи с этим данный металл - типичное твёрдое тело в отличие, например, от ртути.

Железо как простое вещество - металл серебристого цвета c типичными для этой группы элементов свойствами: ковкость, металлический блеск и пластичность. Помимо этого, железо обладает высокой реакционной активностью. О последнем свойстве свидетельствует тот факт, что железо очень быстро подвергается коррозии при наличии высокой температуры и соответствующей влажности. В чистом кислороде этот металл хорошо горит, а если раскрошить его на очень мелкие частицы, то они будут не просто гореть, а самовозгораться.

Зачастую железом мы называем не чистый металл, а его сплавы, содержащих углерод ©, например, сталь (<2,14% C) и чугун (>2,14% C). Также важное промышленное значение имеют сплавы, в которые добавляются легирующие металлы (никель, марганец, хром и другие), за счёт них сталь становится нержавеющей, т. е. легированной. Таким образом, исходя из этого становится понятным, какое обширное промышленное применение имеет этот металл.

Характеристика Fe

Химические свойства железа

Рассмотрим подробнее особенности этого элемента.

Свойства простого вещества

  • Окисление на воздухе при высокой влажности (коррозийный процесс):

4Fe+3O2+6H2O = 4Fe (OH)3 - гидроксид (гидроокись) железа (III)

  • Горение железной проволоки в кислороде с образованием смешанного оксида (в нём присутствует элемент и со степенью окисления +2, и со степенью окисления +3):

3Fe+2O2 = Fe3O4 (железная окалина). Реакция возможна при нагревании до 160 ⁰C.

  • Взаимодействие с водой при высокой температуре (600−700 ⁰C):

3Fe+4H2O = Fe3O4+4H2

  • Реакции с неметаллами:

а) Реакция с галогенами (Важно! При данном взаимодействии приобретает степень окисления элемента +3)

2Fe+3Cl2 = 2FeCl3 - хлорид трёхвалентного железа

б) Реакция с серой (Важно! При данном взаимодействии элемент имеет степень окисления +2)

Сульфид железа (III) - Fe2S3 можно получить в ходе другой реакции:

Fe2O3+ 3H2S=Fe2S3+3H2O

в) Образование пирита

Fe+2S = FeS2 - пирит. Обратите внимание на степень окисления элементов, составляющих данное соединение: Fe (+2), S (-1).

  • Взаимодействие с солями металлов, стоящими в электрохимическом ряду активности металлов справа от Fe:

Fe+CuCl2 = FeCl2+Cu - хлорид железа (II)

  • Взаимодействие с разбавленными кислотами (например, соляной и серной):

Fe+HBr = FeBr2+H2

Fe+HCl = FeCl2+ H2

Обратите внимание, что в этих реакция получается железо со степенью окисления +2.

  • В неразбавленных кислотах, которые являются сильнейшими окислителями, реакция возможна только при нагревании, в холодных кислотах металл пассивируется:

Fe+H2SO4 (концентрированная) = Fe2 (SO4)3+3SO2+6H2O

Fe+6HNO3 = Fe (NO3)3+3NO2+3H2O

  • Амфотерные свойства железа проявляются только при взаимодействии с концентрированными щелочами:

Fe+2KOH+2H2O = K2+H2 - тетрагидроксиферрат (II) калия выпадает в осадок.

Процесс производства чугуна в доменной печи

  • Обжиг и последующее разложение сульфидных и карбонатных руд (выделение оксидов металла):

FeS2 —> Fe2O3 (O2, 850 ⁰C, -SO2). Эта реакция также является первым этапом промышленного синтеза серной кислоты.

FeCO3 —> Fe2O3 (O2, 550−600 ⁰C, -CO2).

  • Сжигание кокса (в избытке):

С (кокс)+O2 (возд.) —> CO2 (600−700 ⁰C)

CO2+С (кокс) —> 2CO (750−1000 ⁰C)

  • Восстановление руды, содержащий оксид, угарным газом:

Fe2O3 —> Fe3O4 (CO, -CO2)

Fe3O4 —> FeO (CO, -CO2)

FeO —> Fe (CO, -CO2)

  • Науглероживание железа (до 6,7%) и расплавление чугуна (t⁰плавления - 1145 ⁰C)

Fe (твёрдый)+С (кокс) —> чугун. Температура реакции - 900−1200 ⁰C.

В чугуне всегда присутствует в виде зёрен цементит (Fe2C) и графит.

Характеристика соединений, содержащих Fe

Изучим особенности каждого соединения отдельно.

Fe3O4

Смешанный или двойной оксид железа, имеющий в своём составе элемент со степенью окисления как +2, так и +3. Также Fe3O4 называют железной окалиной . Это соединение стойко переносит высокие температуры. Не вступает реакцию с водой, парами воды. Подвергается разложению минеральными кислотами. Может быть подвергнуто восстановлению водородом либо железом при высокой температуре. Как вы могли понять из вышеизложенной информации, является промежуточным продуктом в цепочке реакция промышленного производства чугуна.

Непосредственно же железную окалину применяют в производстве красок на минеральной основе, цветного цемента и изделий из керамики. Fe3O4 - это то, что получается при чернении и воронении стали. Получают смешанный оксид путём сгорания железа на воздухе (реакция приведена выше). Руда, содержащая оксиды, является магнетитом.

Fe2O3

Оксид железа (III), тривиальное название - красный железняк , соединение красно-коричневого цвета. Устойчиво к воздействию высоких температур. В чистом виде не образуется при окислении железа кислородом воздуха. Не вступает в реакцию с водой, образует гидраты, выпадающие в осадок. Плохо реагирует с разбавленными щелочами и кислотами. Может сплавляться с оксидами других металлов, образуя шпинели - двойные оксиды.

Красный железняк применяется в качестве сырья при промышленном получении чугуна доменным способом. Также ускоряет реакцию, то есть является катализатором, в аммиачной промышленности. Применяется в тех же областях, что и железная окалина. Плюс к этому использовался как носитель звука и картинки на магнитных лентах.

FeOH2

Гидроксид железа (II) , соединение, обладающее как кислотными, так и основными свойствами, преобладают последние, то есть, является амфотерным. Вещество белого цвета, которое быстро окисляется на воздухе, «буреет», до гидроокиси железа (III). Подвержено распаду при воздействии температуры. Вступает в реакцию и со слабыми растворами кислот, и со щелочами. В воде не растворим. В реакции выступает в роли восстановителя. Является промежуточным продуктом в реакции коррозии.

Обнаружение ионов Fe2+ и Fe3+ («качественные» реакции)

Распознавание ионов Fe2+ и Fe3+ в водных растворах производят с помощью сложных комплексных соединений - K3, красная кровяная соль, и K4, жёлтая кровяная соль, соответственно. В обеих реакциях выпадает осадок насыщенного синего цвета с одинаковым количественным составом, но различным положением железа с валентностью +2 и +3. Этот осадок также часто называют берлинской лазурью или турнбуллевой синью.

Реакция, записанная в ионном виде

Fe2++K++3-  K+1Fe+2

Fe3++K++4-  K+1Fe+3

Хороший реактив для выявления Fe3+ — тиоцианат-ион (NCS-)

Fe3++ NCS-  3- — эти соединения имеют ярко-красную («кровавую») окраску.

Этот реактив, например, тиоцианат калия (формула - KNCS), позволяет определить даже ничтожно малую концентрацию железа в растворах. Так, он способен при исследовании водопроводной воды определить, не заржавели ли трубы.

Железо – химический элемент

1. Положение железа в периодической таблице химических элементов и строение его атома

Железо - это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar (Fe ) = 56; состав атома: 26-протонов; 30 – нейтронов; 26 – электронов.

Схема строения атома:

Электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

Металл средней активности, восстановитель:

Fe 0 -2 e - → Fe +2 , окисляется восстановитель

Fe 0 -3 e - → Fe +3 , окисляется восстановитель

Основные степени окисления: +2, +3

2. Распространённость железа

Железо – один из самых распространенных элементов в природе . В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию . Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются :

магнетит (магнитный железняк) – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:


гематит (железный блеск, кровавик)– Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе:

лимонит (бурый железняк) – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму:


пирит (серный колчедан, железный колчедан, кошачье золото) – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале.


3. Роль железа в жизни человека и растений

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозиии хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

5. Получение железа

Восстановлением из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C = Fe + CO

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Опыт "Получение железа алюминотермией"

6. Химические свойства железа

Как элемент побочной подгруппы железо может проявлять несколько степеней окисления. Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления +2 и +3. Таким образом, можно говорить, что у железа имеется два ряда соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3

2) Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III) - вещество чёрного цвета:

3Fe + 2O 2 = Fe 3 O 4

C кислородом во влажном воздухе образуется Fe 2 O 3 * nH 2 O

Опыт "Взаимодействие железа с кислородом"

3) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O t˚C → Fe 3 O 4 + 4H 2 ­

4) Железо реагирует с неметаллами при нагревании:

Fe + S t˚C → FeS

5) Железо легко растворяется в соляной и разбавленной серной кислотах при обычных условиях:

Fe + 2HCl = FeCl 2 + H 2 ­

Fe + H 2 SO 4 (разб .) = FeSO 4 + H 2 ­

6) В концентрированных кислотах – окислителях железо растворяется только при нагревании

2Fe + 6H 2 SO 4 (конц .) t˚C → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц .) t˚C → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O Железо (III)

7. Применение железа.

Основная часть получаемого в мире железа используется для получения чугуна и стали - сплавов железа с углеродом и другими металлами. Чугуны содержат около 4% углерода. Стали содержат углерода менее 1,4%.

Чугуны необходимы для производства различных отли­вок - станин тяжелых машин и т.п.

Изделия из чугуна

Стали используются для изготовления машин, различных строительных материалов, балок, листов, проката, рельсов, инструмента и множества других изделий. Для производства различных сортов сталей применяют так называемые легиру­ющие добавки, которыми служат различные металлы: М

Тренажёр №2 - Генетический ряд Fe 3+

Тренажёр №3 - Уравнения реакций железа с простыми и сложными веществами

Задания для закрепления

№1. Составьте уравнения реакций получения железа из его оксидов Fe 2 O 3 и Fe 3 O 4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите превращения по схеме:
Fe 2 O 3 -> Fe - +H2O, t -> X - +CO, t -> Y - +HCl ->Z
Назовите продукты X, Y, Z?

Железо

ЖЕЛЕ́ЗО -а; ср.

1. Химический элемент (Fe), ковкий металл серебристого цвета, образующий в соединении с углеродом сталь и чугун.

2. Обиходное название малоуглеродистой стали, металла серебристого цвета. Ковать ж. Ветер стучит железом крыши.

3. О том, что является сильным, твёрдым, крепким (о внешних физических качествах). Руки у тебя - ж.! // О том, что является жёстким, непреклонным (о внутренних моральных качествах). Характер у него - ж.

4. Разг. О лекарстве, содержащем железистые вещества. Организму не хватает железа. Пить ж. Яблоки содержат ж.

5. Разг. техн. Аппаратные средства компьютера (в отличие от программных средств). Купить недостающее железо.

Выжечь калёным желе́зом. Искоренять, уничтожать что-л., прибегая к крайним, чрезвычайным мерам. Куй желе́зо, пока горячо (см. Кова́ть).

Желе́зный; Желе́зистый; Желе́зка; Желе́зина (см.).

желе́зо

(лат. Ferrum), химический элемент VIII группы периодической системы. Блестящий серебристо-белый металл. Образует полиморфные модификации; при обычной температуре устойчиво α-Fe (кристаллическая решётка - кубическая объёмно-центрированная) с плотностью 7,874 г/см 3 . α-Fe вплоть до 769°C (точка Кюри) ферромагнитно; t пл 1535°C. На воздухе окисляется - покрывается рыхлой ржавчиной. По распространённости элементов в природе железо находится на 4-м месте; образует около 300 минералов. На долю сплавов железа с углеродом и другими элементами приходится около 95% всей металлической продукции (чугун, сталь, ферросплавы). В чистом виде практически не используется (в быту железными часто называют стальные или чугунные изделия). Необходимо для жизнедеятельности животных организмов; входит в состав гемоглобина.

ЖЕЛЕЗО

ЖЕЛЕ́ЗО (лат. Ferrum), Fe (читается «феррум»), химический элемент, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов (см. НУКЛИД) с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s 2 p 6 d 6 4s 2 . Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.
В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят также кобальт (см. КОБАЛЬТ) и никель (см. НИКЕЛЬ) . Эти три элемента образуют триаду и обладают сходными свойствами.
Радиус нейтрального атома железа 0,126 нм, радиус иона Fe 2+ - 0,080 нм, иона Fe 3+ - 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.
Железо высокой чистоты - это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механической обработки.
Нахождение в природе
В земной коре железо распространено достаточно широко - на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит (см. ГЕМАТИТ) , Fe 2 O 3 ; содержит до 70% Fe), магнитные железняки (руда магнетит (см. МАГНЕТИТ) , Fe 3 О 4 ; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO 2 ·n H 2 O), а также шпатовые железняки (руда сидерит (см. СИДЕРИТ) , карбонат железа, FeСО 3 ; содержит около 48% Fe). В природе встречаются также большие месторождения пирита (см. ПИРИТ) FeS 2 (другие названия - серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10 -5 -1·10 -8 % железа.
История получения железа
Железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тыс. до н. э. Период с 9 по 7 в. до н. э., когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, (см. ЖЕЛЕЗНЫЙ ВЕК) пришедшего на смену бронзовому веку (см. БРОНЗОВЫЙ ВЕК) . Усовершенствование способов дутья (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи - домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс (см. КОКС) . В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства - домны, кислородные конвертеры, электродуговые печи.
Физические и химические свойства
При температурах от комнатной и до 917 °C, а также в интервале температур 1394-1535 °C существует a-Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394 °C устойчиво b-Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769 °C (так называемая точка Кюри (см. КЮРИ ТОЧКА) ) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное a-Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917 °C, рассматривают как g-модификацию железа, а b-Fe, устойчивое при высоких температурах (1394-1535 °C), называют по традиции d-Fe (представления о существовании четырех модификаций железа - a, b, g и d- возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535 °C, температура кипения 2750 °C, плотность 7,87 г/см 3 . Стандартный потенциал пары Fe 2+ /Fe 0 –0,447В, пары Fe 3+ /Fe 2+ +0,771В.
При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe 2 О 3 ·хН 2 О.
С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe 2 О 3 , при сгорании в чистом кислороде - оксид Fe 3 О 4 . Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы и железа образуется сульфид, приближенную формулу которого можно записать как FeS.
Железо при нагревании реагирует с галогенами (см. ГАЛОГЕНЫ) . Так как FeF 3 нелетуч, железо устойчиво к действию фтора до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl 3 . Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr 3 . При нагревании FeСl 3 и, особенно, FeBr 3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода образуется иодид Fe 3 I 8 .
При нагревании железо реагирует с азотом, образуя нитрид железа Fe 3 N, с фосфором, образуя фосфиды FeP, Fe 2 P и Fe 3 P, с углеродом, образуя карбид Fe 3 C, с кремнием, образуя несколько силицидов, например, FeSi.
При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO) 5 . Известны также карбонилы железа составов Fe 2 (CO) 9 и Fe 3 (CO) 12 . Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена (см. ФЕРРОЦЕН) состава .
Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.
С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):
Fe + 2HCl = FeCl 2 + H 2
Fe + H 2 SO 4 = FeSO 4 + H 2
При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):
2Fe + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O
Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН) 2 . Оксид железа (III) Fe 2 O 3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН) 2 , основание Fe(ОН) 3 , которое реагирует с кислотами:
2Fe(ОН) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O
Гидроксид железа (III) Fe(ОН) 3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:
Fe(ОН) 3 + КОН = К
Образующиеся при этом гидроксокомплексы железа (III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH) 3.
Соединения железа (III) в растворах восстанавливаются металлическим железом:
Fe + 2FeCl 3 = 3FeCl 2
При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):
4FeCl 2 + O 2 + 2H 2 O = 4Fe(OH)Cl 2
Из солей железа (II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа (II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 О.
Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.
При действии газообразного хлора или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) - ферраты, например, феррат (VI) калия K 2 FeO 4 . Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).
Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами CNS - . При взаимодействии ионов Fe 3+ с анионами CNS - образуется ярко-красный роданид железа Fe(CNS) 3 . Другим реактивом на ионы Fe 3+ служит гексацианоферрат (II) калия K 4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe 3+ и 4- выпадает ярко-синий осадок.
Реактивом на ионы Fe 2+ в растворе может служить раствор гексацианоферрат (III) калия K 3 , ранее называвшийся красной кровяной солью. При взаимодействии ионов Fe 3+ и 3- выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe 3+ и 4- .
Сплавы железа с углеродом
Железо используется главным образом в сплавах, прежде всего в сплавах с углеродом - различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно - на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0,8-1 %).
Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию - нагреванию при температуре около 1000 °C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей - шлака. Снизу в домну подают дутье (чистый кислород или воздух, обогащенный кислородом). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300 °C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:
Fe 2 O 3 + 3C = 2Fe + 3CO;
Fe 2 O 3 + 3CО = 2Fe + 3CO 2
возникает металлическое железо, которое насыщается углеродом и стекает вниз.
Этот расплав периодически выпускают из домны через специальное отверстие - летку - и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун - это твердый раствор углерода в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.
Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.
Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.
Если содержание углерода в чугуне снизить до 1,0-1,5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома, никеля, молибдена, кобальта и других металлов, улучшающие механические и иные свойства стали).
Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода в сплаве до требуемого уровня, как говорят, избыточный углерод выгорает.
Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.
Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.
Применение железа, его сплавов и соединений
Чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа - чугун и сталь - составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.
Железо в организме
Железо присутствует в организмах всех растений и животных как микроэлемент, (см. МИКРОЭЛЕМЕНТЫ) то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии (см. ЖЕЛЕЗОБАКТЕРИИ) , использующие энергию окисления железа (II) в железо (III) для хемосинтеза (см. ХЕМОСИНТЕЗ) , могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа - участие в транспорте кислорода и окислительных процессах. Эту функцию железо выполняет в составе сложных белков - гемопротеидов (см. ГЕМОПРОТЕИДЫ) , простетической группой которых является железопорфириновый комплекс - гем (см. ГЕМ) . Среди важнейших гемопротеидов дыхательные пигменты гемоглобин (см. ГЕМОГЛОБИН) и миоглобин, (см. МИОГЛОБИН) универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, (см. ЦИТОХРОМЫ) ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина (см. ФЕРРИТИН) , осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови - около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "железо" в других словарях:

    Ср. зале(и)зо южн., зап. металл, крушец, выплавляемый из руды в виде чугуна, и выковываемый из сего последнего под кричным молотом. В соединении с углеродом, оно образует сталь. В продажу железо идет в виде: полосового или сортового; первое прямо … Толковый словарь Даля

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png