Принципы наследственности были обозначены впервые в 1900-х годах, когда естественные получили развитие и ввели в обиход (с полным определением) понятия геном человека и ген, в частности. Их исследование дало возможность ученым открыть секрет наследственности, и стало толчком для изучения наследственных болезней и их природы.

Вконтакте

Геном человека: общие понятия

Чтобы разобраться, что такое гены и процессы наследования организмом определенных свойств и качеств, следует знать и понимать термины и основные положения. Краткое изложение основных понятий даст возможность более глубоко вникнуть в данную тему.

Гены человека – это части цепи (дезоксирибонуклеиновая кислота в виде макромолекул), которая задает последовательность определенных полипептидов (семейства аминокислот) и несет основную наследственную информацию от родителей к детям.

Говоря простым языком, определенный ген содержит информацию о строении белка и несет ее от родительского организма к детскому, повторяя строение полипептидов и передавая наследственность.

Геном человека – это обобщающее понятие, обозначающее некоторое количество определённых генов. Впервые его ввел Ганс Винклер в 1920-м, однако спустя время несколько изменилось его изначальное значение.

Вначале он обозначал определенное количество хромосом (непарных и одинарных), а спустя время выяснилось, что в геноме 23 парных хромосомы и митохондриальная дезоксирибонуклеиновая кислота.

Генетическая информация – это данные которые заключены в ДНК, и несущие порядок построения белков в виде кода из нуклеотидов. Стоит также упомянуть, что подобная информация находится внутри и вне границ .

Гены человека исследовались на протяжении многих лет, за которые было претворено в жизнь множество экспериментов . До сих пор проводятся опыты, которые дают ученым новую информацию.

Благодаря последним исследованиям стало ясно, что не всегда четкая и последовательная структура наблюдается в дезоксирибонуклеиновых кислотах.

Существуют так называемые прерывистые гены, связи которых прерываются, что делает неверными все предыдущее теории о постоянстве этих частиц. В них время от времени происходят изменения, которые влекут за собой изменения и в структуре дезоксирибонуклеиновых кислот.

История открытия

Впервые научный термин был обозначен только в 1909 году ученым Вильгельмом Иогансеном, который был выдающимся ботаником в Дании.

Важно! В 1912 году появилось слово «генетика», которое стало названием целого отдела . Именно он занимается изучением генов человека.

Исследование частицы началось задолго до 20 века (данных в каком точно году нет), и складывалось из нескольких этапов:

  1. В 1868 году известный ученый Дарвин выдвинул гипотезу о пангенезе. В ней он описывал отделение геммулы. Дарвин считал, что геммула – это определенная часть клетки, из которой затем образовываются половые клетки.
  2. Через несколько лет Гуго де Фриз сформировал свою собственную теорию, отличную от дарвиновской, в которой описал процесс пангенеза внутри клеток. Он считал, что в каждой клетке есть частица, и она ответственна за некоторые свойства наследования вида. Он обозначил эти частицы как «пангены». Отличия двух гипотез заключается в том, что Дарвин считал геммулы частями тканей и внутренних органов, независимо от вида животного, а де Фриз представлял свои пангены как признаки наследования внутри конкретного вида.
  3. В. Иогансен в 1900 году определил наследственный фактор как ген, взяв вторую часть от термина, использованного де Фризом. Он использовал слово для определения «зачатка», той частицы, которая является наследственной. При этом ученый подчеркивал независимость термина от ранее выдвинутых теорий.

Изучением наследственного фактора уже достаточно давно занимались биологи и зоологи, но только с начала 20-го века генетика начала развиваться с огромной скоростью, открывая для людей тайны наследования.

Расшифровка генома человека

С того момента, как ученые открыли наличие в организме человека гена, они стали исследовать вопрос информации, заключенной в нем. Уже более 80 лет ученые пытаются расшифровать ее. На сегодняшний день они добились в этом значительных успехов, что дало возможность влиять на наследственные процессы и менять структуру клеток у следующего поколения.

История расшифровки ДНК состоит из нескольких определяющих моментов:

  1. 19 век – начало изучения нуклеиновых кислот.
  2. 1868 год – Ф. Мишер впервые выделяет из клеток нуклеин или ДНК.
  3. В середине 20 века О. Эвери и Ф. Гриффит выясняют при помощи опыта, проведенного на мышах, что за процесс трансформации бактерий отвечает именно нуклеиновая кислота.
  4. Первый человеком, кто показал миру ДНК стал Р. Франклин. Спустя несколько лет после открытия нуклеиновой кислоты он делает фотографию ДНК, случайным образом используя рентген при исследовании структуры кристаллов.
  5. В 1953 году дано точное определение принципу воспроизводства жизни у всех видов.

Внимание ! С того времени, как впервые общественности предоставили двойную спираль ДНК, произошло множество открытий, давших возможность понять природу ДНК и механизмы ее работы.

Человеком, который открыл ген , принято считать Грегора Менделя, впервые обнаружившего определенные закономерности в наследственной цепи.

А вот расшифровка ДНК человека произошла на основе открытия другого ученого – Фредерика Сенгера, который разработал методы чтения последовательностей белковых аминокислот и последовательность построения самой ДНК.

Благодаря работе множества ученых за три последних века были выяснены процессы формирования, особенности, и сколько генов находится в геноме человека.

В 1990 году начался международный проект «Геном человека», которым руководил Джеймс Уотсон. Его целью было выяснить, в какой последовательности выстраиваются нуклеотиды в ДНК, и выявить около 25 000 генов в человеке. Благодаря этому проекту человек должен был получить полное представление о формировании ДНК и расположению всех его составляющих частей, а также механизм построения гена.

Стоит уточнить, что программа не ставила своей задачей определить всю последовательность нуклеиновой кислоты в клетках, а лишь только некоторых областей. Началась она в 1990 году, но только в 2000 был выпущен черновик работы, а полное исследование завершено — в 2003 году . Исследование последовательности длиться до сих пор и 8% гетерохроматиновых областей все еще не определены.

Цели и задачи

Как любой научный проект, «Геном человека» ставил перед собой конкретные цели и задачи. Изначально ученые собирались выявить последовательности 3 млрд нуклеотидов и более. Затем отдельные группы исследователей выразили желание попутно определить также последовательность биополимеров, которая бывает аминокислотной или нуклеотидной. В итоге главные цели проекта выглядели следующим образом:

  1. Создать карту генома;
  2. Создать карту человеческих хромосом;
  3. Выявить последовательность формирования полипептидов;
  4. Сформировать методологию хранения и анализа собранной информации;
  5. Создать технологию, которая поможет в достижении всех указанных выше целей.

Данный список задач упускает не менее важную, но не такую очевидную – это изучение этических, правовых и социальных последствий подобных исследований. Вопрос наследственности может вызывать разногласия среди людей и повлечь серьезные конфликты, поэтому ученые поставили за цель обнаружить решения этих конфликтов до их возникновения.

Достижения

Наследственные последовательности – это уникальное явление , которое наблюдается в организме каждого человека в той или иной форме.

Проект достиг всех поставленных задач раньше, чем исследователи предполагали. К концу проекта они расшифровали около 99,99 % ДНК, хотя ученые ставили перед собой задачу секвенировать только 95% данных. Сегодня, несмотря на успех проекта, остаются все еще неисследованные участки дезоксирибонуклеиновых кислот.

В итоге исследовательской работы было определено сколько генов в организме человека (около 20-25 тыс. генов в геноме), и все они охарактеризованы:

  • количество;
  • расположение;
  • структурно-функциональные особенности.

Геном человека — исследования, расшифровка

Расшифровка человеческого генома

Вывод

Все данные будут подробно изложены в генетической карте человеческого организма. Претворение в жизнь такого сложного научного проекта дало не только колоссальные теоретические знания для фундаментальных наук, но и оказало невероятное влияние на само понимание наследственности. Это в свою очередь, не могло не отразиться на процессах предупреждения и лечения наследственных болезней.

Данные, полученные учеными, помогли ускорить другие молекулярные исследования и способствовать эффективному поиску генетической основы в заболеваниях, передающихся по наследству, и предрасположенности к ним. Результаты смогут повлиять на обнаружение соответствующих лекарств для профилактики множества заболеваний: атеросклероза, сердечной ишемии, болезней психического и онкологического характера.

ЛЕКЦИЯ

ПРОГРАММА “ГЕНОМ ЧЕЛОВЕКА”

Геном секвенировали в 2003 г‚ т.е. к пятидесятилетнему юбилею открытия двойной спирали ДНК (1953)‚ планировалось к 2005 г.

В 1988 г. один из первооткрывателей знаменитой двойной спирали ДНК, нобелевский лауреат Дж. Уотсон, публично высказал мысль о том, что наука вплотную приблизилась к раскрытию химической основы наследственности, причем не какого-либо низшего организма, а "царя природы" - человека. В том же самом 1988-м с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А.А. Баев (1904-1994). После консультаций с коллегами он обратился к М.С. Горбачеву с письмом, в котором предложил организовать государственный научный проект по изучению генома человека. В России, как и за ее пределами, эта идея также была встречена весьма критически, однако время шло, и очень скоро научное сообщество во всем мире стало обсуждать ее всерьез. С 1989 г. и в США, и в СССР функционируют соответствующие научные программы; позднее в 1999 г. возникла Международная организация по изучению генома человека (HUGO‚ Human Genome Project), вице-президентом которой несколько лет был академик А.Д. Мирзабеков. Это один из самых дерзновенных, дорогостоящих и потенциально важных проектов в истории цивилизации. Если в 1990 г. на него было потрачено около 60 млн долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн долларов, а частные компании - и того больше.

Координационный центр HUGO находится в американском городе Бетесда, недалеко от Вашингтона, и относится к системе национальных институтов здоровья (National Institutes of Health). Возглавляет его Фрэнсис Коллинз - директор Института геномных исследований в Бетесде. Центр координировал научную работу в шести странах - Германии, Англии, Франции, Японии, Китае и США. Но национальные программы по геномике сегодня имеют более 20 стран (20 лабораторий), а членами HUGO являются представители более 50 стран. Национальные программы есть в развивающихся странах, например в Китае и Бразилии, где правительства понимают важность геномной программы. В научном совете много лет работали А. Мирзабеков и я. Сейчас Россию в нем представляет профессор Н. К. Янковский.

Важно подчеркнуть, что с самого начала работ по геномному проекту мир договорился об открытости, доступности всей получаемой информации для его участников независимо от их вклада и государственной принадлежности. Это значит, что любая лаборатория, закончив расшифровку нуклеотидной последовательности какого-либо фрагмента ДНК, немедленно посылает результаты в международную базу данных в Америку или Германию. Из таких баз данных ученые, занимающиеся биоинформатикой, черпают информацию для своих расчетов. Сейчас существуют десятки мощных баз данных, в которых аккумулирована гигантская информация о структуре не только генома человека, но и геномов многих других организмов.

В 1989 г в СССР по решению правительства было открыто финансирование и организован Научный совет по программе "Геном человека" под руководством А.А. Баева. Расположившийся в головном учреждении программы - Институте молекулярной биологии им. В.А. Энгельгардта РАН, совет весьма быстро создал инфраструктуру, объединил исследования многих разрозненных групп. В России по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.

Российская программа развивалась по ряду направлений: медицинская геномика‚ функциональная геномика и биоинформатика. Одно из главных - биоинформатика. Что это такое? Биоинформатика - компьютерный анализ всей совокупности данных по нуклеотидным последовательностям ДНК. Сейчас в базах данных находится несколько миллиардов нуклеотидных пар человеческого генома и геномов других живых организмов. В этом море информации еще нужно разобраться, описать, понять, что следует за чем, где начало гена, где его конец, где регуляторные участки. Не определить, а предсказать. Расшифровать нуклеотидную последовательность - это все равно, что читать книгу, просто произнося названия букв подряд. Найти ген, значит понять, как буквы складываются в слова. Вероятность правильного предсказания сегодня достигает 85%. Биоинформатика не дает конечной информации, она дает исходную информацию. А затем наличие того или иного гена проверяется экспериментально. Биоинформатика предсказывает: вот здесь ген начинается, а здесь - заканчивается. Ученые-экспериментаторы "вырезают" предполагаемый ген из ДНК и проверяют, действительно ли этот фрагмент отвечает за синтез определенной белковой молекулы. Иногда оказывается, что ученые-биоинформатики предсказали гены правильно, а иногда - нет.

Еще один аспект, который особенно бурно развивается в многонациональной России - это определение генома разных народностей . Ее населяют разные этнические группы. Оказывается, что геном у разных народностей слегка различается. Можно в ДНК выделить определенный "рисунок" нуклеотидов (особое расположение), который будет говорить о том, что этот человек - башкир, а этот - татарин. Геномы представителей разных этнических групп не идентичны, но различия между ними чрезвычайно незначительны, хотя и абсолютно достоверны, и поэтому возможно сравнивать разные этнические группы.

Такой подход связывает геномику с историей, лингвистикой, археологией, палеонтоло гией, этнографией. И возникают поразительно интересные находки. Как вы думаете, к какой этнической группе ближе всего русские?

Славяне близки по материнской линии (поскольку изучается митохондриальная ДНК, передающаяся ребенку от матери) к нашим западным соседям: немцам, угрофиннам.

Сейчас ведутся работы по изучению Y-хромосомы, что гораздо сложнее, чем изучать митохондриальную ДНК. Через два-три года мы будем знать, как выглядит русский этнос по отношению к своим соседям уже по отцовской линии.

Работа очень увлекательная и ведется весьма активно. Участвуют исследователи из Томска, Москвы, Уфы и Тарту (Эстония). Международное сообщество смотрит на результаты наших исследований во все глаза: ведь мы имеем уникальные этносы.

Прежде всего, можно будет подбирать лекарственные препараты "по национальному признаку". Ведь не секрет, что многие признаки сцеплены с принадлежностью человека к определенной этнической группе. Поэтому такие исследования не только очень интересны, но они еще и создают основу будущей индивидуальной медицины.

Новая медицина станет не только индивидуальной, а профилактической (превентивной). Врачи смогут не только лечить болезнь, но и предотвращать ее возникновение. Геномика позволит сделать и это

В ядре каждой соматической клетки человека содержится 23 пары хромосом: на каждую хромосому приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека равна почти 2 м, количество нуклеотидных пар составляет 6,4 млрд. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца. Число генов у человека находится в пределах от 30 до 40 тысяч.

Предположение о числе генов в геноме человека с момента начала проекта сократилось вдвое (от 80-100 тыс). Выявлено большое количество "бессмысленных" участков. Они устроены не так, как гены‚ более того - это значительная часть генома. (95%). Вот в 5% генома, где находятся те самые 32 тысячи генов, мы знаем многое о структуре и немногое о функциях. По-научному "бессмысленные" участки называют некодирующими. Некоторые американские ученые называют их "junk" - барахлом, мусором или "эгоистической ДНК". Однако‚ если мы не понимаем, для чего нужны какие-то участки ДНК, сие еще не значит, что они - мусор.

У бактерии "бессмысленных" участков вообще нет. У дрожжей почти нет. По мере повышения уровня организации живого организма накапливается все больше некодирующей ДНК. Я думаю, что некодирующие последовательности ДНК могут оказаться резервуаром эволюции, складом "запчастей". Если с каким-либо геном что-то не в порядке, возможно, клетка использует фрагменты некодирующей ДНК для ремонта поврежденного гена.

В "бессмысленной" ДНК есть испорченные гены, погибшие в результате каких-то мутаций. Их называют псевдогенами.

Во-вторых, наши далекие предки - неандертальцы или кроманьонцы болели вирусными заболеваниями, и эти вирусы (а вирусы состоят из молекул ДНК или РНК и белковой оболочки) иногда попадали в геном и оставались там навсегда. Иными словами, часть нашего генома - молекулярное кладбище древнейших вирусов.

Затем, в нашем геноме есть масса повторяющихся участков. Действительно, очень интересно, почему человек - "венец эволюции" имеет огромную долю "неработающего" генома.

Рис. 2. Примерное распределение генов человека по их функциям.

1 - производство клеточных материалов; 2 - производство энергии и ее использование; 3 - коммуникации внутри и вне клеток; 4 - защита клеток от инфекций и повреждений; 5 - клеточные структуры и движение; 6 - воспроизводство клеток; 7 - функции не выяснены

По своему геному мы мало отличаемся от мыши. Различия в структуре генов - процентов 10-15, не больше. А от шимпанзе мы отличаемся на 1‚23%. Это показало первое в мире исследование, проведенное международной группой специалистов во главе с японским профессором Иосиюки Сакаи.

Проблема происхождения человека стала гораздо сложнее, чем ученые думали раньше. Подсознательно мы надеялись набрать сотню генов, отличающих человека от шимпанзе. И мы скажем по-французски "voila" - вот они эти гены, благодаря которым мы "выбились" в люди. А пока их нет.

Различия обнаружены в другом: в геноме человека много вставленных в него чужеродных элементов - ретровирусов, а у обезьян их почти нет.

Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из хромосом человека, которое должно завершиться определением полной первичной структуры ДНК всех хромосом.

В течение последних лет исследования проводились в следующих направлениях:

1. Компьютерный анализ полного генома человека и его частей на основе информации в открытых базах данных. Разработка принципиально новых подходов к хранению, обработке и получению структурной информации из баз данных на основе вновь созданного программного обеспечения.

2. Идентификация новых генов на основе физического, хромосомного и функционалного картирования, клонирования и секвенирования. Структурный и функциоеналный анализ вновь найденных генов и регуляции их активности.

3. Установление cause-and-effect генетических отношений между генами и предрасположенностью к широкораспространенным заболеваниям различной природы. Выявление роли индивидуальных генов и их мутаций в этиологии и развитии некоторых заболеваний человека.

4. Развитие методов генной и геномной диагностики заболеваний человека на основезнания физической карты и последовательностей нуклеотидов.

5. Разработка методов генной терапии моногенных заболеваний на основе знаний о молекулярно-генетических механизмах их возникновения и развития.

6. Разработка открытых юридических, этичских, законодательных/ правовых, социальных и других аспектов исследований генома и использзования информации о структуре и свойствах геномов отдельных??? людей. Предсказания путей развития медицины и здравоохранения на основе нового уровня знаний о геноме человека и формулирование соответствующих практических предложений.

Решение основной задачи программы «Геном человека» включает следующие этапы.

* На первом этапе необходимо завершить составление детальной генетической карты и отметить гены, отстоящие друг от друга на расстоянии, не превышающем в среднем 2 млн оснований (1 млн оснований равен 1 мегабазе -- 1 Мб, от англ. base-- основание).

* Второй этап предполагает составление физических карт низкого разрешения каждой хромосомы (разрешение 0,1 Мб).

* На третьем этапе следует получить физическую карту высокого разрешения всего генома в виде охарактеризованных по отдельности клонов (клон содержит 5 Кб).

* Четвертый этап посвящен определению полной первичной структуры (секвенированию) всей ДНК генома человека (разрешение -- 1 основание).

* На пятом, заключительном, этапе необходимо в найденных последовательностях нуклеотидов локализовать все гены организма и определить их функциональное значение.

Генетическое картирование

Генетические карты сцепления. Генетические карты сцепления определяют хромосомную принадлежность и взаимное расположение генетических маркеров относительно друг друга. Картирование в узком смысле -- определение положения гена или мутации в хромосоме. Позднее этот термин получил более широкое толкование. Он относится не только к гену, но к любому маркеру, под которым подразумевают ген, мутацию, участок ДНК с неопределенной функцией, точку расщепления ДНК рестриктазами. Таким образом, маркер -- это любой наследуемый признак, доступный идентификации тем или иным способом. Установление локализации какого-либо маркера позволяет использовать его для определения положения другого маркера.

На практике именно генетические карты сцепления и только они позволяют локализовать сложные генетические маркеры (например, ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения.

До начала 70-х годов XX в. построение генетических карт человека продвигалось очень медленными темпами. Первый ген человека (ген цветной слепоты) был картирован на Х-хромосоме в 1911 г., а первый аутосомный ген -- только в 1968 г. К 1973 г. на хромосомах человека было картировано 64 гена, а к 1994 г. -- 5000 структурных генов и свыше 60 000 маркерных ДНК-последовательностей. Столь стремительный прогресс в картировании генов человека связан с появлением новых технологий в цитогенети-ке, в клеточных культурах и особенно в молекулярной генетике.

Гибридизация соматических клеток. Одним из наиболее популярных методов отнесения генетического маркера (функционально активного гена) к конкретной группе сцепления является гибридизация (слияние друг с другом) соматических клеток разных биологических видов организмов, один из которых -- исследуемый. Гибридные клоны получают путем искусственного слияния клеток человека и различных грызунов: китайского хомячка, мыши, крысы. Культивирование таких соматических гибридов, как оказалось, сопровождается утратой хромосом человека. Потеря хромосом носит случайный характер, и образующиеся клоны клеток содержат оставшиеся хромосомы в разных сочетаниях. Так получают панели гибридных клеточных клонов, содержащих всего одну или несколько хромосом человека и полный набор хромосом другого вида. Обнаружение человеческих белков, специфических мРНК или последовательностей ДНК в таких клонах позволяет однозначно определить хромосомную принадлежность соответствующих генов.

Гибридизация in situ (в том же месте). Этот метод дает возможность локализовать определенные последовательности нуклеотидов на хромосомах. Они выступают в качестве зондов. Препараты фиксированных хромосом гибридизуют с исследуемыми последовательностями, меченными радиоактивной или флуоресцентной меткой. Меченые молекулы оказываются ассоциированными с участками хромосом, содержащими последовательности, комплементарные меченому зонду. Полученные гибриды анализируют с помощью микроскопа либо непосредственно, либо после радиоавтографии. Этот метод по частоте использования в последнее время прочно выходит на первое место. Наиболее популярной оказалась группа методов, получивших название флуоресцентной гибридизации in situ -- метод FISH (от англ. Fluorescence in situ hybridization ).

Полимеразная цепная реакция (ПЦР) позволила быстро и эффективно амплифицировать почти любой участок генома человека, а полученные продукты ПЦР использовать в качестве зондов для картирования соответствующих участков на хромосомах путем гибридизации in situ . В этом плане успешно разработана концепция сайтов, привязанных к последовательностям, --STS (от англ. Sequence - tagged sites ). Все фрагменты ДНК, которые используются для построения генетических и физических карт, можно однозначно идентифицировать с помощью последовательности нуклеотидов длиной в 200 -- 500 н.п., которая является уникальной для данного фрагмента. Эти сайты амплифицируют с помощью ПЦР и применяют в качестве зондов. STS позволили создать основу для разработки единого языка, дающего возможность разным лабораториям описать свои клоны. Конечным результатом разработки концепции STS является создание исчерпывающей карты STS генома человека. Для получения маркеров в настоящее время часто применяют праймеры, соответствующие диспергированным повторяющимся последовательностям, среди которых первыми стали использовать А1u-последовательности, так как они характерны именно для генома человека. Поскольку в геноме человека больше 90 % умеренно повторяющихся последовательностей представлены семействами А1u и Крn I (последние повторяются реже и обладают характерной локализацией в хромосомах), они и используются для получения соответствующих зондов в ПЦР-реакции.

Физические карты низкого разрешения. Физические карты генома отражают реальное расстояние между маркерами, выражаемое в парах нуклеотидов. Физическую карту низкого разрешения часто называют хромосомной (цитогенетической) картой генома.

В начале 70-х годов XX в. появилась реальная возможность точной идентификации не только всех хромосом в кариотипе человека, но и их отдельных сегментов. Это связано с появлением мето да дифференциального окрашивания препаратов метафазных хромосом. Хромосомные препараты окрашивают некоторыми флуорохромами после соответствующей протеолитической обработки или нагревания. При этом на хромосомах выявляется характерная поперечная исчерченность -- так называемые диски (бэнды), расположение которых специфично для каждой хромосомы. Величина небольших дисков на прометафазных хромосомах соответствует примерно 1 млн н.п. на физических картах. Каждая хромосома после дифференциальной окраски может быть разделена на сегменты, нумерация которых начинается от центромерного района вверх (короткое плечо р) либо вниз (длинное плечо -- q ) . Полосы в каждом сегменте также пронумерованы в аналогичном порядке. Запись положения гена на карте включает номер хромосомы, плечо, номер сегмента, бэнда и его субъединицы.

Запись 7 q21.1 означает, что ген локализован в субъединице 1-го бэнда 2-го сегмента длинного плеча хромосомы 7. Подобная запись удобна для цитогенетического картирования метода гибридизации in situ, позволяющего локализовать ген с точностью до одного бэнда и даже его субъединицы.

Хромосомные карты генома человека получают также локализацией генетических маркеров, чаще всего методом FISН: для метафазных хромосом разрешающая способность хромосомных карт находится в пределах 2 -- 5 млн н.п.; для интерфазных хромосом (генетический материал находится в менее компактной форме) -- приближается к 100 тыс. н.п. Для этого уровня картирования характерны карты кДНК (с. 358). Они отражают положение экспрес-сирующихся участков ДНК (экзонов) относительно известных ци-тогенетических маркеров (бэндов) на метафазных хромосомах. Поскольку такие карты дают представление о локализации транскрибирующихся участков генома, в том числе и генов с неизвестными функциями, они могут быть использованы для поиска новых генов. Этот подход полезен при поиске генов, повреждение которых вызывает заболевания человека, в том случае, если приблизительная локализация таких участков хромосом уже проведена на генетических картах сцепления (см. рис. 100).

Физические карты высокого разрешения. Для построения физических карт высокого разрешения экспериментально реализуется два альтернативных подхода: картирование сверху вниз и картирование снизу вверх (рис.В к геному) . Для картирования сверху вниз препарат ДНК индивидуальной хромосомы человека разрезают крупнощепящими рестриктазами (например, Not I) на длинные фрагменты, которые после разделения методом электрофореза в пульсирующем поле подвергаются дальнейшей обработке другими рестриктазами.

Методом электрофореза под действием однонаправленного постоянного поля в агарозном или полиакриламидном гелях удается разделить фрагменты ДНК размером не более 30 --50 тыс. н.п. Продвижение больших фрагментов ДНК в геле при пульсирующем изменении направления электрического поля происходит за счет конформационных изменений, обусловленных скручиванием и раскручиванием молекул ДНК в момент переключения направления поля. В этом случае удается разделить молекулы ДНК размером от 50 тыс. н.п. до 10 млн н.п.).

В результате получают макрорестрикционную карту. Метод электрофореза был с успехом использован для картирования малых геномов.

Для картирования генома человека снизу вверх на основе препарата суммарной ДНК генома или индивидуальной хромосомы получают серию случайных клонов протяженных последовательностей ДНК (10-- 1000 тыс. н.п.), часть из которых перекрывается друг с другом. В качестве вектора для клонирования в этом случае используют искусственные минихромосомы дрожжей (УАС). Последовательный набор клонов, содержащих частично перекрывающиеся и дополняющие друг друга фрагменты ДНК из определенного района генома, получил название скользящего зондирования, или «прогулки по хромосоме». Каждый раз отобранный фрагмент используется в качестве ДНК-зонда для последующего поиска. В результате получают набор клонированных фрагментов ДНК, полностью перекрывающих исследуемый участок генома, получивший название «контиг». Эта стратегия впервые была успешно применена для изучения 3-й хромосомы дрозофилы. С ее помощью редко удается пройти более 200 -- 300 тыс. н.п. в одном направлении из-за наличия в геноме повторяющихся и трудно клонируемых последовательностей ДНК. Для преодоления таких ограничений и ускорения процесса поиска генных последовательностей Ф. Коллинз, ныне президент Международного консорциума, предложил метод «прыжков» по хромосоме, позволяющий изолировать фрагменты ДНК, отстоящие в геноме друг от друга на сотни тысяч пар нуклеотидов (длина прыжка), не выделяя при этом все промежуточные последовательности ДНК.

Правильность полученных контигов подтверждают обычно гибридизацией in situ (FISH) с одновременной привязкой к определенным участкам исследуемых хромосом.

Определение нуклеотидной последовательности генома человека

Исчерпывающая физическая карта генома человека должна представлять собой полную последовательность нуклеотидов ДНК всех его хромосом. К решению такой грандиозной по объему задачи привлечены многие хорошо финансируемые лаборатории в разных странах мира, оснащенные автоматическими высокопроизводительными секвенаторами.

Создание в середине 70-х годов теперь уже прошлого века двух различных методов расшифровки нуклеотидной последовательности ДНК. Хронологически первым был метод Максама - Гилберта. В его разработке большую роль сыграл академик Андрей Дарьевич Мирзабеков. Английский ученый Фред Сэнгер предложил другой способ расшифровки структуры ДНК. За разработку этих методов Гилберт и Сэнгер получили Нобелевскую премию. Интересно, что для Сэнгера эта премия уже вторая, первую он получил за расшифровку аминокислотной последовательности белка инсулина. Случай в науке уникальный - один и тот же человек первым расшифровал структуру и белка и ДНК!

Метод Максама - Гилберта состоит в том, что молекулу ДНК разбивают на кусочки, затем эти кусочки подвергают химическим воздействиям, потом специальным образом обрабатывают. Ученые смотрят, что при этом происходит с нуклеотидной последовательностью, и на основании этого делают вывод о порядке расположения нуклеотидов друг за другом в каждом фрагменте ДНК.

Согласно методу Сэнгера молекулу ДНК с помощью специальной обработки ферментами не только расщепляют на фрагменты, но и "расплетают" ее двойную спираль на две нити. Потом по каждому из полученных обрывков, состоящих из отдельных нуклеотидных "нитей", с помощью специальных химических "затравок" восстанавливается недостающая вторая нить нуклеотидов. Но не полностью - ее синтез обрывают на разных нуклеотидах. При этом получался набор цепей ДНК с непрерывно изменяющейся длиной - "лесенка". Фрагменты разной длины помечены на концах флуоресцентной меткой, чтобы их было легко обнаружить.

Надо сказать, что российские биологи внесли существенный вклад в разработку и этого метода. Новосибирский ученый профессор Станислав Константинович Василенко предлагал принцип "лесенки" еще до публикации работ Сэнгера, этот же принцип развивал и академик Евгений Давыдович Свердлов, директор Института молекулярной генетики РАН. То, что Василенко и Свердлов - предтечи Сэнгеровского метода, забывать не стоит.

Все автоматы-секвенаторы построены по принципу метода Сэнгера, поскольку он оказался более удобным для автоматизации и комьютерной регистрации. Выпущено огромное количество автоматов и стандартных наборов реактивов для анализа. По сути, секвениро вание (то есть определение нуклеотидной последовательности ДНК) стало рутинной лаборантской работой. А метод Максама-Гилбера имеет скорее историческое, чем практическое значение.

Еще 15-20 лет назад расшифровка нуклеотидной последовательности в 1000 нуклеотидов считалась почти научным подвигом, за это можно было сразу получить степень доктора наук. Но уже к 1990 году секвенирование ДНК стало массовой технологией. А сейчас квалифицированный лаборант проделывает такую работу меньше, чем за один день.

Разработаны и другие совершенно новые методы секвенирования. Один из них базируется на возможности избирательно присоединять тяжелые атомы металлов (нерадиоактивные изотопы) к определенным нуклеотидам с последующим масс-спектрометрическим сканированием молекул ДНК, пропускаемых через тончайший (нанометровый) микрокапилляр. Устройство читает нуклеотидную последовательность практически безошибочно. При этом не нужно дорогостоящих и отнимающих уйму труда операций по химическому секвенированию, использованию наборов рестрикционных ферментов и прочих ухищрений. Метод начала использовать компания "Секвеном", зарегистрированная в городе Сан-Диего (Калифорния) и руководимая Чарлзом Кэнтором.

Другой подход основан на присоединении флюоресцентных меток к ДНК, разрезании ДНК одним или несколькими рестрикционными ферментами на достаточно протяженные куски и оптическом анализе кусков. Так как флюоресцентные метки, сорбирующиеся на индивидуальных нуклеотидах, создают для каждого участка ДНК светящуюся картинку, характерную только для него, можно сравнивать ее с имеющимися в памяти компьютеров картинками. Для этого сотрудники компании "Силера джиномикс" создали прибор оптического "обстрела" протяженных ДНК (система Visionade) и математический алгоритм Gentig. Если после оптического просмотра остаются сомнения в точности нуклеотидных последовательностей в каких-то коротких участках, только эти участки и надлежит секвенировать химически. Оптическая "стрельба" по нарезанным участкам ДНК позволила достичь небывалой скорости в секвенировании: в свое время изучение генома кишечной палочки потребовало работы нескольких сот человек в течение 12 месяцев, в то время как система Visionade помогла расшифровать этот же геном в несколько минут.

Структура генома человека (по данным секвенирования на 2001 г.)

На основе компьютерных алгоритмов, построенных на современных представлениях об общей структуре гена и о белковых доменах, было рассчитано количество генов, кодирующих белки в геноме человека. Международный консорциум определил 31 780 белок-кодирующих генов, а фирма Целера Геномикс обнаружила 39 114 таких генов.

Показано, что типичный ген человека состоит примерно из 28000 н.п. и имеет 8 экзонов, его кодирующая последовательность 1340 н.п., этот ген кодирует 447 аминокислот.

Самым большим геном, найденным в геноме человека, является ген мышечного белка дистрофина (2,4 * 106 н. п.). Фибриллярный белок титин, ответственный за пассивную эластичность скелетных мышц, состоит из 27 000 аминокислотных остатков. Его ген содержит 234 экзона. Это наибольшее количество экзонов, пока найденное в белок-кодирующих генах человека. Структура и организация генов человека много сложнее, чем структура генов других эукариот. Очень часто они прерываются большими интронами, 35 % генов человека могут считываться с разных рамок, а 40 % РНК подвергаются альтернативному сплайсингу. Таким образом, одна последовательность ДНК может кодировать более одного вида мРНК.

По сравнению с геномами других эукариотических организмов у человека большее распространение получили гены, участвующие в обеспечении иммунной защиты; в развитии нервной системы (нейротрофические факторы, факторы роста нервов), сигнальных молекул, миелиновых белков, потенциал-управляемых ионных каналов и синаптических рецепторных белков; в построении цитоскелета и движении везикул, обеспечении внутри- и межклеточной сигнализации, поддержании гомеостаза. У человека значительно большее количество генов участвует в транскрипции и трансляции. Из 2000 таких генов 900 относятся к семейству белков, содержащих «цинковые пальцы».

В целом на долю генов, кодирующих белки, приходится 2 % генома; на области, кодирующие РНК, -- около 20% генома, повторяющиеся последовательности занимают более 50 % генома, причем значительная часть этой ДНК возникла за счет обратной транскрипции РНК.

Исследование структуры генома ряда прокариот и эукариот, и человека в частности, способствовало созданию науки о геномах -- геномики. В нее включают изучение геномов на молекулярном, хромосомном, биохимическом и фенотипическом уровнях. Нам представлена схема, поясняющая взаимоотношения между геномикой человека и другими научными направлениями в современной биологии. Структурная и сравнительная геномика через биоинформатику переходит в новый раздел -- функциональную геномику, главной задачей которой является выяснение биологических функций генных продуктов и в первую очередь белков.

У многих современных исследователей, работающих в области геномики, нет сомнений, что первое десятилетие XXI в. будет эрой функциональной геномики и биоинформатики.

В сети Интернет можно найти большое число адресов, содержащих разнообразную информацию, касающуюся генома человека:

Что можно ждать от геномных исследований в ближайшие 40 лет? Вот как сформулировал прогноз Ф.Коллинз, руководитель программы "Геном человека" (США).

2010 год

Генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсестры начинают выполнять медико-генетические процедуры.

Широко доступна преимплантационная диагностика, яростно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Не всем доступны практические приложения геномики, особенно в развивающихся странах.

2020 год

На рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Терапия рака, прицельно направленная на свойства раковых клеток. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Демонстрация безопасности генотерапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.

2030 год

Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее 1000 $. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.

2040 год

Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (при/до рождения).

Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни детектируются на ранних стадиях путем молекулярного мониторинга.

Для большинства заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря социоэкономическим мерам. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.

Протеомика

Эта совершенно новая отрасль биологии, изучающая структуру и функции белков и взаимосвязи между ними, названа по аналогии с геномикой, занимавшейся геномом человека. Само рождение протеомики уже объясняет, зачем нужна была программа Геном человека. Поясним на примере перспективы нового направления

Вернемся к протеомике. Знание аминокислотных последовательностей и трехмерной структуры определенных белков позволило разработать программы сопоставления генетических последовательностей с аминокислотными, а затем программы предположительного расположения их в трехмерной структуре полипептидов. Знание трехмерной структуры позволяет быстро находить химические варианты молекул, в которых блокирован, например, активный центр, или определять положение активного центра у мутантного фермента.

ЧТО ТАКОЕ ГЕНОМ?

Вопросы вечны, ответы обусловлены временем.

Е. Чаргафф

В диалоге с жизнью важен не ее вопрос, а наш ответ.

М. И. Цветаева

С самого начала определимся, что мы здесь будем подразумевать под словом геном . Сам этот термин впервые был предложен в 1920 году немецким генетиком Г. Винклером. Тогда уже существовал другой научный термин - генотип , введенный в арсенал генетиков В. Иогансеном еще в 1909 году, под которым подразумевалась совокупность всех наследственных задатков данной конкретной клетки или данного конкретного организма. Впоследствии Иогансен сам с удивлением говорил, что его «словечко» неожиданно материализовалось в возникшей позднее хромосомной теории Т. Моргана. Но вот появился новый термин - геном. В отличие от генотипа этот термин должен был стать характеристикой целого вида организмов, а не конкретной особи . И это стало новым этапом в развитии генетики .

В биологическом словаре понятие геном определяется как совокупность генов, характерных для гаплоидного (одинарного) набора хромосом данного вида организмов. Такая формулировка звучит не совсем понятно для неспециалиста, а главное, она неточна в современном понимании этого слова. Основу генома составляет молекула дезоксирибонуклеиновой кислоты, хорошо известная в сокращенном виде как ДНК. Ведь все геномы (ДНК) содержат по крайней мере два вида информации: кодированная информация о структуре молекул-посредников (так называемых РНК) и белка (эта информация содержится в генах), а также инструкции, которые определяют время и место проявления этой информации при развитии и дальнейшей жизнедеятельности организма (эта информация в основном расположена в межгенных участках, хотя частично и в самих генах). Сами гены занимают очень небольшую часть генома, но при этом составляют его основу. Информация, записанная в генах, - это своего рода «инструкция» для изготовления белков, главных строительных кирпичиков нашего тела. «На плечах» генов лежит огромная ответственность за то, как будет выглядеть и работать каждая клетка и организм в целом. Они управляют нашей жизнью от момента зачатия до самого последнего вздоха, без них не функционирует ни один орган, не течет кровь, не бьется сердце, не работают печень и мозг.

Однако для полной характеристики генома недостаточно заложенной в нем информации о структуре белков. Нужны еще данные об элементах генетического аппарата, которые принимают участие в работе (экспрессии ) генов, регулируют их проявление на разных этапах развития и в разных жизненных ситуациях.

Но даже и этого мало для полного определения генома. Ведь в геноме присутствуют также элементы, способствующие его самовоспроизведению (репликации ), компактной упаковке ДНК в ядре и еще какие-то непонятные пока еще участки, иногда называемые «эгоистичными» (то есть как бы служащими только для самих себя). По всем этим причинам сегодня, когда речь идет о геноме, обычно имеют в виду всю совокупность последовательностей ДНК, представленных в хромосомах ядер клеток определенного вида организмов, включая, конечно, и гены. В этой книге мы будем подразумевать именно такое определение. Вместе с тем следует помнить, что в некоторых других структурах (органеллах) клетки также присутствует генетическая информация, необходимая для функционирования организмов. В частности, у всех животных организмов, в том числе и у человека, имеется еще и митохондриальный геном, то есть молекулы ДНК, присутствующие в таких внутриклеточных структурах, как митохондрии, и содержащие ряд так называемых митохондриальных генов. Митохондриальный геном человека очень небольшой по сравнению с ядерным геномом, расположенным в хромосомах, но, тем не менее, его вклад в клеточный метаболизм весьма существенен.

Это было семь лет назад - 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп - International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics - объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества - постгеномная эра.

Что может дать нам расшифровка генома, и стоят ли потраченные средства и усилия достигнутого результата? Фрэнсис Коллинз (Francis S. Collins ), руководитель американской программы «Геном человека», в 2000 году дал следующий прогноз развития медицины и биологии в постгеномную эру:

  • 2010 год - генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год - на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год - определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год - Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Как видно из прогноза, геномная информация в недалеком будущем может стать основой лечения и профилактики множества болезней. Без информации о своих генах (а она умещается на стандарный DVD-диск) человек в будущем сможет вылечить разве что насморк у какого-нибудь целителя в джунглях. Это кажется фантастикой? Но когда-то такой же фантастикой была поголовная вакцинация от оспы или интернет (заметьте, в 70-х его еще не существовало)! В будущем генетический код ребенка будут выдавать родителям в роддоме. Теоретически, при наличии такого диска, лечение и предотвращение любых недугов отдельно взятого человека станет сущим пустяком. Профессиональный врач сможет в предельно сжатые сроки поставить диагноз, назначить эффективное лечение, и даже определить вероятность появления разных болезней в будущем. К примеру, современные генетические тесты уже позволяют точно определить степень предрасположенности женщины к раку груди. Почти наверняка, лет через 40–50 ни один уважающий себя врач без генетического кода не захочет «лечить вслепую» - подобно тому, как сегодня хирургия не может обойтись без рентгеновского снимка.

Давайте зададимся вопросом - а достоверно ли сказанное, или, может быть, в действительности всё будет наоборот? Смогут ли люди наконец победить все болезни и придут ли они ко всеобщему счастью? Увы. Начнем с того, что Земля маленькая, и счастья на всех не хватит. По правде сказать, его не хватит даже для половины населения развивающихся стран. «Счастье» предназначено в основном для государств, развитых в плане науки, в частности - наук биологических. Например методика, с помощью которой можно «прочесть» генетический код любого человека, уже давно запатентована. Это отлично отработанная автоматизированная технология - правда, дорогостоящая и очень тонкая. Хочешь, покупай лицензию, а хочешь - придумывай новую методику. Только вот денег на подобную разработку хватит далеко не у всех стран! В итоге ряд государств будет обладать медициной, существенно опережающей уровень остального мира. Естественно, в слаборазвитых странах Красным Крестом будут строиться благотворительные больницы, госпитали и геномные центры. И постепенно это приведет к тому, что генетическая информация пациентов развивающихся стран (которых большинство), сосредоточится у двух-трех держав, финансирующих эту благотворительность. Что можно сделать, имея такую информацию - даже представить трудно. Может, и ничего страшного. Однако возможен и другой исход. Битва за приоритет, сопровождавшая секвенирование генома, наглядно подтверждает важность доступности генетической информации. Давайте кратко вспомним некоторые факты из истории программы «Геном человека».

Противники расшифровки генома считали поставленную задачу нереальной, ведь ДНК человека в десятки тысяч раз длиннее молекул ДНК вирусов или плазмид. Главный аргумент против был: «проект потребует миллиарды долларов, которых недосчитаются другие области науки, поэтому геномный проект затормозит развитие науки в целом. А если все-таки деньги найдутся и геном человека будет расшифрован, то полученная в результате информация не оправдает затрат... » Однако Джеймс Уотсон, один из первооткрывателей структуры ДНК и идеолог программы тотального прочтения генетической информации, остроумно парировал: «лучше не поймать большую рыбу, чем не поймать маленькую » , . Аргумент учёного был услышан - проблему генома вынесли на обсуждение в конгресс США, и в итоге была принята национальная программа «Геном человека».

В американском городе Бетесда, что недалеко от Вашингтона, находится один из координационных центров HUGO (HUman Genome Organization ). Центр координирует научную работу по теме «Геном человека» в шести странах - Германии, Англии, Франции, Японии, Китае и США. В работу включились учёные из многих стран мира, объединенные в три команды: две межгосударственные - американская Human Genome Project и британская из Wellcome Trust Sanger Institute - и частная корпорация из штата Мериленд, включившаяся в игру чуть позже, - Celera Genomics . Кстати, это пожалуй первый случай в биологии, когда на таком высоком уровне частная фирма соревновалась с межгосударственными организациями.

Борьба происходила с использованием колоссальных средств и возможностей. Как отмечали некоторое время назад российские эксперты, Celera стояла на плечах у программы «Геном Человека», то есть использовала то, что уже было сделано в рамках глобального проекта. Действительно, Celera Genomics подключилась к программе не сначала, а когда проект уже шёл полным ходом. Однако специалисты из Celera усовершенствовали алгоритм секвенирования. Кроме того, по их заказу был построен суперкомпьютер, который позволял складывать выявляемые «кирпичики» ДНК в результирующую последовательность быстрее и точнее. Конечно, все это не давало компании Celera безоговорочного преимущества, однако считаться с ней как с полноправным участником гонки заставило.

Появление Celera Genomics резко повысило напряженность - те, кто был занят в государственных программах, почувствовали жёсткую конкуренцию. Кроме того, после создания компании остро встал вопрос об эффективности использования государственных капиталовложений. Во главе Celera стал профессор Крейг Вентер (Craig Venter ) , который имел огромный опыт научной работы по государственной программе «Геном человека». Именно он и заявил, что все публичные программы малоэффективны и что в его фирме геном секвенируют быстрее и дешевле. А тут появился ещё один фактор - спохватились крупные фармацевтические компании. Дело в том, что если вся информация о геноме окажется в открытом доступе, они лишатся интеллектуальной собственности, и нечего будет патентовать. Озабоченные этим, они вложили миллиарды долларов в Celera Genomics (с которой, вероятно, было проще договориться). Это еще более укрепило её позиции. В ответ на это коллективам межгосударственного консорциума срочно пришлось повышать эффективность работ по расшифровке генома. Сначала работа шла несогласованно, но потом были достигнуты определенные формы сосуществования - и гонка начала наращивать темп.

Финал был красивым - конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека , . Произошло это, как мы уже писали - 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Рисунок 1. «Гонка за генóм», в которой участвовали межгосударственная и частная компании, формально завершилась «ничьей»: обе группы исследователей опубликовали свои достижения практически одновременно. Руководитель частной компании Celera Genomics Крейг Вентер опубликовал свою работу в журнале Science в соавторстве с ~270 учёными, работавшими под его началом . Работа, выполненная международным консорциумом по секвенированию человеческого генома (IHGSC), опубликована в журнале Nature , и полный список авторов насчитывает около 2800 человек, работавших в почти трёх десятках центров по всему миру .

Исследования в сумме продлились 15 лет. Создание первого «чернового» варианта генома человека обошлось в 300 миллионов долларов. Однако на все исследования по этой теме, включая сравнительные анализы и решение ряда этических проблем, было выделено в сумме около трех миллиардов долларов. Celera Genomics вложила примерно столько же, правда, она истратила их всего за шесть лет. Цена колоссальная, но эта сумма ничтожна в сравнении с той выгодой, которую получит страна-разработчик от ожидаемой вскоре окончательной победы над десятками серьезных заболеваний. В начале октября 2002 года в интервью «Ассошиэйтед пресс» президент Celera Genomics Крейг Вентер заявил, что одна из его некоммерческих организаций планирует заняться изготовлением компакт-дисков, содержащих максимум информации о ДНК клиента. Предварительная стоимость такого заказа - более 700 тысяч долларов. А одному из первооткрывателей структуры ДНК - доктору Джеймсу Уотсону - уже в этом году были подарены два DVD-диска с его геномом общей стоимостью 1 млн. долларов , - как видим, цены падают. Так, вице-президент фирмы 454 Life Sciences Майкл Эгхолм (Michael Egholm ) сообщил , что в скором времени компания сможет довести цену расшифровки до 100 тыс. долларов.

Широкая известность и масштабное финансирование - палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты - между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies ) настаивал , что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies ) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Очевидно, что наспех «приватизированная» генетическая информация будет в ближайшие годы тщательно проверяться, пока точное число генов станет, наконец, общепринятым. Но настораживает тот факт, что в процессе «познания» патентуется вообще все, что только можно запатентовать. Тут даже не шкура не убитого медведя, а вообще все, что находилось в берлоге, было поделено! Кстати, на сегодня дебаты сбавили обороты, и геном человека официально насчитывает только 21667 генов (версия NCBI 35 , датированная октябрём 2005 года). Следует отметить, что пока большая часть информации всё-таки остаётся общедоступной. Сейчас существуют базы данных, в которых аккумулирована информация о структуре генома не только человека, но и геномов многих других организмов (например, EnsEMBL). Однако попытки получить исключительные права на использование каких-либо генов или последовательностей в коммерческих целях всегда были, есть сейчас и будут предприниматься впредь.

На сегодня основные цели структурной части программы уже в основном выполнены - геном человека почти полностью прочитан. Первый, «черновой» вариант последовательности, опубликованный в начале 2001 года , был далек от совершенства. В нём отсутствовало приблизительно 30% последовательности генома в целом, из них около 10% последовательности так называемого эухроматина - богатых генами и активно экспрессирующихся участков хромосом. Согласно последним подсчётам, эухроматин составляет примерно 93,5% от всего генома . Оставшиеся же 6,5% приходятся на гетерохроматин - эти участки хромосом бедны генами и содержат большое количество повторов, которые представляют серьезные трудности для ученых, пытающихся прочесть их последовательность . Более того, считается, что ДНК в гетерохроматине находится в неактивном состоянии и не экспрессируется. (Этим можно объяснить такое «невнимание» ученых к оставшимся «малым» процентам человеческого генома.) Но даже имевшиеся на 2001 год «черновые» варианты эухроматиновых последовательностей содержали большое количество разрывов, ошибок и неверно соединенных и ориентированных фрагментов. Нисколько не умаляя значения для науки и ее приложений появление этого «черновика», стоит однако отметить, что использование этой предварительной информации в крупномасштабных экспериментах по анализу генома в целом (например, при исследовании эволюции генов или общей организации генома) выявило множество неточностей и артефактов. Поэтому дальнейшая и не менее кропотливая работа, «последние вершки», была абсолютно необходима.

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в , заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Таким образом, изначальный план проекта был значительно перевыполнен. Помогло ли это нам в понимании того, как устроен и работает наш геном? Безусловно. Авторы статьи в Nature , в которой был опубликован «окончательный» (на 2004 год) вариант генома , провели с его использованием несколько анализов, которые были бы абсолютно бессмысленны, имей они на руках только «черновую» последовательность. Оказалось, что более тысячи генов «родились» совсем недавно (по эволюционным меркам, конечно) - в процессе удвоения исходного гена и последующего независимого развития дочернего гена и гена-родителя. А чуть меньше сорока генов недавно «умерли», накопив мутации, сделавшие их совершенно неактивными. Другая статья, вышедшая в том же номере журнала Nature , прямо указывает на недостатки метода, использованного учеными из Celera . Следствием этих недостатков стали пропуски многочисленных повторов в прочитанных последовательностях ДНК и, как результат, недооценённая длина и сложность всего генома. Чтобы не повторять подобных ошибок в будущем, авторы статьи предложили использовать гибридную стратегию - комбинацию высокоэффективного подхода, использовавшегося учеными из Celera , и сравнительно медленного и трудоемкого, но и более надежного метода, применявшегося исследователями из IHGSC.

Куда дальше будет направлено беспрецедентное исследование «Геном человека»? Кое-что об этом можно сказать уже сейчас. Основанный в сентябре 2003 года международный консорциум ENCODE (ENCyclopaedia Of DNA Elements ) поставил своей целью обнаружение и изучение «управляющих элементов» (последовательностей) в геноме человека. Действительно, ведь 3 млрд. пар оснований (а именно такова длина генома человека) содержат всего лишь 22 тыс. генов, разбросанных в этом океане ДНК непонятным для нас образом. Что управляет их экспрессией? Зачем нам такой избыток ДНК? Действительно ли он является балластом, или же все-таки проявляет себя, обладая какими-то неизвестными функциями ?

Для начала, в качестве пилотного проекта, ученые из ENCODE «пристально вгляделись» в последовательность, составляющую 1% от генома человека (30 млн. пар оснований), используя новейшее оборудование для исследований в молекулярной биологии. Результаты были опубликованы в апреле нынешнего года в Nature . Оказалось, что бóльшая часть генома человека (в том числе участки, считавшиеся ранее «молчащими») служит матрицей для производства различных РНК, многие из которых не являются информационными, поскольку не кодируют белков. Многие из этих «некодирующих» РНК перекрываются с «классическими» генами (участками ДНК, кодирующими белки). Неожиданным результатом было и то, как регуляторные участки ДНК были расположены относительно генов, экспрессией которых они управляли. Последовательности многих из этих участков мало изменялись в процессе эволюции, в то время как другие участки, считавшиеся важными для управления клеткой, мутировали и изменялись в процессе эволюции с неожиданно высокой скоростью . Все эти находки поставили большое количество новых вопросов, ответы на которые можно получить лишь в дальнейших исследованиях.

Другая задача, решение которой станет делом недалекого будущего, - определение последовательности оставшихся «малых» процентов генома, составляющих гетерохроматин, т. е. бедных генами и богатых повторами участков ДНК, необходимых для удвоения хромосом в процессе деления клетки. Наличие повторов делает задачу расшифровки этих последовательностей неразрешимой для существующих подходов, и, следовательно, требует изобретения новых методов. Поэтому не удивляйтесь, когда году в 2010 выйдет очередная статья, объявляющая об «окончании» расшифровки генома человека - в ней будет рассказано о том, как был «взломан» гетерохроматин.

Конечно, сейчас в нашем распоряжении имеется лишь некий «усредненный» вариант человеческого генома. Образно говоря - мы сегодня имеем лишь самое общее описание конструкции автомобиля: мотор, ходовая часть, колёса, руль, сиденья, краска, обивка, бензин с маслом и т. д. Ближайшее рассмотрение полученного результата свидетельствует о том, что впереди - годы работ по уточнению наших знаний по каждому конкретному геному. Программа «Геном человека» не прекратила свое существование, она лишь меняет ориентацию: от структурной геномики осуществляется переход к геномике функциональной, предназначенной установить, как управляются и работают гены. Более того, все люди на уровне генов отличаются так же, как одни и те же модели автомобилей отличаются различными вариантами исполнения одних и тех же агрегатов. Не только отдельные основания в последовательностях генов двух разных людей могут отличаться, но и количество копий крупных фрагментов ДНК, порой включающих в себя несколько генов, может сильно варьировать. А это означает, что на передний план выходят работы по детальному сравнению геномов, скажем, представителей различных человеческих популяций, этнических групп, и даже здоровых и больных людей. Современные технологии позволяют быстро и точно проводить такие сравнительные анализы, а ведь еще лет десять назад об этом никто и не мечтал. Изучением структурных вариаций человеческого генома занимается очередное международное научное объединение . В США и Европе значительные средства выделяются на финансирование биоинформатики - молодой науки, возникшей на стыке информатики, математики и биологии, без которой никак не разобраться в безграничном океане информации, накопленном в современной биологии. Биоинформационные методы помогут нам ответить на многие интереснейшие вопросы - «как происходила эволюция человека?», «какие гены определяют те или иные особенности человеческого организма?», «какие гены ответственны за предрасположенность к болезням?» Знаете, как говорят англичане: “This is the end of the beginning ” - «Это конец начала». Вот именно эта фраза точно отражает нынешнюю ситуацию . Начинается самое главное и - я совершенно уверен - самое интересное: накопление результатов, их сравнение и дальнейший анализ.

«...Сегодня мы выпускаем в свет первое издание „Книги жизни“ с нашими инструкциями , - сказал в эфире телеканала «Россия» Фрэнсис Коллинз. - Мы будем обращаться к нему десятки, сотни лет. И уже скоро люди зададутся вопросом, как они могли обходиться без этой информации ».

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

«...Надежды же на то, что новая информация о функциях генома будет полностью открытой, чисто символические. Можно прогнозировать, что возникнут (на базе уже имеющихся) гигантские центры, которые смогут все данные соединить в одно связное целое, некую электронную версию Человека и реализовывать её практически - в гены, белки, клетки, ткани, органы и что угодно ещё. Но во что? Угодное кому? Для чего? В процессе работ по программе „геном человека“ стремительно совершенствовались методы и аппаратура для определения первичной последовательности ДНК. В крупнейших центрах это превратилось в некое подобие заводской деятельности. Но даже на уровне лабораторных индивидуальных приборов (вернее их комплексов) уже создано столь совершенное оборудование, что оно способно определить за три месяца такую по объему последовательность ДНК, которая равна всему геному человека. Не удивительно, что возникла (и тут же начала стремительно реализоваться) идея определения геномов индивидуальных людей. Безусловно, это очень интересно - сравнить отличия разных индивидуумов на уровне их первоосновы. Польза от такого сравнения тоже несомненная. Можно будет установить, у кого имеются какие нарушения в геноме, прогнозировать их последствия и устранить то, что может привести к болезням. Здоровье будет гарантированным, да и жизнь продлится весьма существенно. Это с одной стороны. С другой же стороны всё совсем не очевидно. Получить и проанализировать всю наследственность индивидуума означает получение полного, исчерпывающего биологического досье на него. Оно, при желании того, кто его знает, позволит столь же исчерпывающе делать с человеком всё что угодно. По уже известной цепочке: клетка - молекулярная машина; человек состоит из клеток; клетка во всех своих проявлениях и во всём диапазоне возможных ответов, записана в геноме; с геномом можно ограниченно уже и сегодня манипулировать, а в обозримом будущем вообще манипулировать практически как угодно... »

Однако, наверное, пугаться таких мрачных прогнозов еще рано (хотя знать о них, безусловно, нужно). Для их осуществления надо полностью перестраивать многие социальные и культурные традиции. Очень хорошо по этому поводу сказал в интервью доктор биологических наук Михаил Гельфанд, и. о. заместителя директора Института проблем передачи информации РАН: «...если у вас есть, предположим, один из пяти генов, предопределяющих развитие шизофрении, то что может случиться, если эта информация - ваш геном - попала в руки вашего потенциального работодателя, который ничего в геномике не понимает! (и как следствие - вас на работу могут не принять, посчитав это рискованным; и это не смотря на то, что шизофрении у вас нет и не будет - прим. автора.) Другой аспект: с появлением индивидуализированной медицины, основанной на геномике, полностью изменится страховая медицина. Ведь одно дело - предусматривать риски неизвестные, а другое дело - совершенно определенные. Если честно, то все западное общество в целом, не только российское, к геномной революции сейчас не готово...» .

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном - не просто прочитать, этого далеко не достаточно, - нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки - зависит от нас.

Литература

  1. Киселёв Л. (2001). Новая биология началась в феврале 2001 года . «Наука и Жизнь» ;
  2. Киселёв Л. (2002). Вторая жизнь генома: от структуры к функции . «Знание–Сила» . 7 ;
  3. Ewan Birney, The ENCODE Project Consortium, John A. Stamatoyannopoulos, Anindya Dutta, Roderic Guigó, et. al.. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project . Nature . 447 , 799-816;
  4. Lincoln D. Stein. (2004). Human genome: End of the beginning . Nature . 431 , 915-916;
  5. Гельфанд М. (2007). Постгеномная эра . «Коммерческая биотехнология» .

Особенности

Хромосомы

В геноме присутствует 23 пары хромосом : 22 пары аутосомных хромосом, а также пара половых хромосомы X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом.

Гены

Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу . Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8-раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов .

Прочие объекты в геноме

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома . Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:

  • повторы
    • тандемные повторы
      • сателлитная ДНК
    • диспергированные повторы
      • SINE-ы (short interspersed nuclear element)
      • LINE-ы (long interspersed nuclear element)
  • транспозоны
    • Ретротранспозоны
      • LTR-ы (long terminal repeat)
        • Ty1-copia
        • Ty3-gypsy
      • Не LTR-ы
    • ДНК транспозоны

Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент.

Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и на эти участки генома многие ссылаются как на «мусорную ДНК». Однако существует масса свидетельств, которая говорит о том, что эти объекты обладают некоторой функцией, которая не вполне понятна на текущий момент.

Псевдогены

Вирусы

Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн. лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты.

Большинство ретровирусов встроились в геном предков человека свыше 25 млн. лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено , .

См. также

Примечания

Список литературы

  • Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. - Языки славянской культуры, 2003. - 396 с. - ISBN 5-94457-108-X .
  • Ридли Мэтт. Геном: автобиография вида в 23 главах. - М.: Эксмо, 2008. - 432 с. - ISBN 5-699-30682-4

Ссылки

  • Всеобщая декларация о геноме человека и правах человека ЮНЕСКО, 1997
  • Lindblad-Toh K, et al. (2005). «Genome sequence, comparative analysis and haplotype structure of the domestic dog.». Nature 438 (7069): 803-19. PMID 16341006 .

Wikimedia Foundation . 2010 .

Смотреть что такое "Геном человека" в других словарях:

    Геном человека это геном биологического вида Homo sapiens . В нормальной ситуации у человека может присутствовать 24 различных хромосомы (22+X+Y): 22 из них не зависят от пола (аутосомные хромосомы), 2 X хромосома и Y хромосома зависят от пола.… … Википедия

    Логотип проекта Проект по расшифровке генома человека (англ. The Human Genome Project, HGP) международный научно исследовательский проект, главной целью которого было опр … Википедия

    Логотип проекта Проект по расшифровке генома человека (англ. The Human Genome Project, HGP) международный научно исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и… … Википедия

    Проект «Геном человека» - * праект «Геном чалавека» * Human Genome Project or HGP многолетний научно исследовательский проект, задачей которого было получение полной генетической информации, записанной в геноме человека, «прочтение» нуклеотидных последовательностей во… … Генетика. Энциклопедический словарь

    проект «Геном Человека» - — Тематики биотехнологии EN Human Genome Project … Справочник технического переводчика

    Проект Геном человека - широкомасштабное международное исследование генома человека, начатое в конце 1980 х г … Словарь по психогенетике

    - (нем. Genom), совокупность генов, характерных для гаплоидного набора хромосом данного вида организмов; основной гаплоидный набор хромосом. Термин предложен Г. Винклером в 1920. В отличие от генотипа, Г. представляет собой характеристику вида, а… … Биологический энциклопедический словарь

    Совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома отцовский и материнский. Термин геном в современной генетике употребляют и по отношению к совокупности генов у… … Большой Энциклопедический словарь

    ГЕНОМ, совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома отцовский и материнский. Термин геном в генетике употребляют и по отношению к совокупности генов у бактерий … Современная энциклопедия

    Геном - ГЕНОМ, совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома отцовский и материнский. Термин “геном” в генетике употребляют и по отношению к совокупности генов у… … Иллюстрированный энциклопедический словарь

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png